# Effect of elevated pCO<sub>2</sub> on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment

C. Langdon (1) and M. J. Atkinson (2)

(1) Rosenstiel School of Marine and Atmospheric Science, Uni. of Miami, Miami, FL <u>clangdon@rsmas.miami.edu</u> Tel: 305-421-4614

(2) Hawaii Institute of Marine Biology, Kaneohe, HI 96744

**Keywords:** coral, calcification, photosynthesis, global change, pCO<sub>2</sub>, temperature, irradiance, nutrients, interactions

**Running title:** Coral calcification: interactive effects of pCO<sub>2</sub>, temperature, irradiance and nutrients

#### Abstract

An investigation was conducted to determine the effects of elevated pCO<sub>2</sub> on the net production and calcification of an assemblage of corals maintained under near natural conditions of temperature, light, nutrient and flow. Experiments were performed in summer and winter to explore possible interactions between seasonal change in temperature and irradiance and the effect of elevated pCO<sub>2</sub>. Particular attention was paid to interactions between net production and calcification because these two processes are thought to compete for the same internal supply of dissolved inorganic carbon. A nutrient enrichment experiment was performed because it has been shown to induce a competitive interaction between photosynthesis and calcification that may serve as an analog to the effect of elevated pCO<sub>2</sub>. Net carbon production, NP<sub>C</sub>, increased with increased pCO<sub>2</sub> at the rate of  $3\pm 2\%$  (µmol CO<sub>2</sub>aq kg<sup>-1</sup>)<sup>-1</sup>. Seasonal change of the NP<sub>C</sub>-[CO<sub>2</sub>aq] relationship was not significant. Calcification (G) was strongly related to the aragonite saturation state  $\Omega_a$ . Seasonal change of the G- $\Omega_a$  relationship was not significant. The first-order saturation state model gave a good fit to the pooled summer and winter data:  $G = (8 \pm 1 \text{ mmol CaCO}_3 \text{ m}^{-2} \text{ h}^{-1})(\Omega_a - 1)$ ,  $r^2 = 0.87$ , P=0.0001. Both nutrient and CO<sub>2</sub> enrichment resulted in an increase in NP<sub>C</sub> and decrease in G giving support to the hypothesis that the cellular mechanism underlying the decrease in calcification in response to increased pCO<sub>2</sub> could be competition between photosynthesis and calcification for a limited supply of DIC.

# 1. Introduction

The rate of skeletal growth of corals is a major determinant of their fitness and ecological success. Skeletal growth determines a coral colony's ability to compete for space and light, and its ability to repair structural damage caused by humans, storms or predators. Large coral colonies have a greater reproductive output and a competitive advantage over smaller colonies [1999, not in Koop et al. 2001]. The rate of growth also governs how long new coral recruits and coral fragments take to reach the critical colony size for sexual maturity and start reproducing [Harrison and Wallace, 1990; Lirman, 2000; Sakai, 1998; Smith and Hughes, 1999; Soong, 1993; Szmant, 1986; Wood, 1999]. Coral growth or skeletogenesis is driven by calcification, the process whereby  $Ca^{2+}$  and  $CO_3^{2-}$  ions obtained from seawater precipitate in the calcioblastic epithelium of the coral polyp to form crystals of the calcium carbonate mineral aragonite. The presence of zooxanthellae is critical to the ability of corals to calcify at the high rate necessary to build reefs. Azooxanthellate corals do not build reefs. Corals that bleach largely lose the ability to calcify. Recently it was found that the strain of zooxanthallae can affect the rate of growth of juvenile colonies when Little et al. [2004] found that corals containing the thermally-resistant clade D strain grew 2 to 3-times slower than corals containing clade C1 zooxanthallae.

# 1.1 Effect of light, temperature and nutrients on calcification

Environmental conditions are known to exert a strong control on the rate of coral calcification. Calcification increases with increasing light up to a limit and then saturates [*Barnes*, 1982; *Chalker and Taylor*, 1975; *Chalker and Taylor*, 1978; *Marubini et al.*, 2001]. Calcification increases with increasing temperature up to a thermal optimum at or 1-2°C below the normal peak summer temperature and then declines steeply with further increase in temperature [*Coles and Jokiel*, 1978; *Houck et al.*, 1977; *Marshall and Clode*, 2004]. In laboratory studies, nutrient concentration of the experimental incubation water during growth also affects coral calcification. Enrichment of nitrate to levels of 5 to 20 μM result in increased zooxanthallae density and photosynthesis, and decreased calcification [*Marubini and Davies*, 1996; *Marubini and Thake*, 1999]. High ammonium enrichment produces similar results [*Ferrier-Pages et al.*, 2000; *Hoegh-Guldberg and* 

Smith, 1989; Stambler et al., 1991]. The increase in zooxanthallae density and photosynthesis and decrease in calcification has led to the working hypothesis that nitrogen enrichment enhances the net growth of the zooxanthallae, which, in turn, limits the supply of DIC available to the animal host for calcification [*Stambler et al.*, 1991]. The exception to this explanation is the study by Ferrier-Pages et al. [2001] who observed a 23% decrease in calcification in response to nitrate enrichment ( $2 \mu M$ ) but no change in zooxanthallae density or photosynthesis.

In the field with daily exposure to high nutrients, Koop et al. [2001] found that few growth responses were detected in any of the nutrient treatments during the lowloading phase of ENCORE (+N, +P, +NP;11 µM NH<sub>4</sub>, 2.3 µM PO<sub>4</sub>). Some seasonal differences in calcification were measured in Acropora longicyathus between nutrient treatments, however, there were no significant differences when calcification was integrated over a full year. During the high-loading phase of ENCORE (36 µM NH<sub>4</sub>, 5.1  $\mu$ M PO<sub>4</sub>) calcification decreased in the presence of +N, +P and +NP in small colonies of P. damicornis but not in A. longicyathus. Ammonium enrichment led to a decrease in the rate of calcification of A. palifera but had no effect on A. aspera or S. pistillata. It should be noted here that there was no control of carbonate chemistry in these experiments, and it is now well known that carbonate ion can affect calcification more than nitrogen [Marubini and Atkinson, 1999]. The effect of ammonium enrichment on larger (> 20 cm) colonies of A. longicyathus was seasonally variable but integrated over the full year resulted in an overall increase. The calcification rate of both A. longicyathus and A. palifera increased in +P treatments but skeletal density was reduced. +P treatments had no effect on A. aspera and tended to decrease calcification in S. pistillata [Takabayashi, 1996] and P. damicornis. Significant effects on coral reproductive capacity were observed in this study. Corals exposed to ammonium enrichment produced significantly fewer and smaller eggs than unexposed corals, and gametes exposed to +N and +NP had very low fertilization rates.

The different responses of coral to nutrients are probably related to the very different experimental conditions and lack of control of actual nutrient uptake. Experiments on coral physiology and nutrients are conducted by either growing corals in very high nutrient water (often unrealistically high) or exposing corals to high

concentration for brief periods of time. Few experiments report nutrient uptake or nutrient loading. The ENCORE experiment reported actual nutrient loading [*Steven and Atkinson*, 2003, not in Koop et al. 2001]. The low-loading period corresponded to 0.66 mmol P m<sup>-2</sup> per low tide and 3.5 mmol N m<sup>-2</sup> per low tide, both about the same as typical daily loading rates of coral reefs (Atkinson and Falter 2003). Thus it is no surprise that there were no effects from the low-loading nutrient treatment. The high loading treatment corresponded to 3.9 mmol P m<sup>-2</sup> per low tide and 18 mmol N m<sup>-2</sup> per low tide, a factor of 2-4 higher than typical loading rates. We might expect only weak responses by the biota with only a 2-4 factor increase in nutrient loading.

# **1.2 Effect of calcium carbonate saturation state on calcification**

Recently there has been a great deal of interest in the aragonite-saturation state as an environmental variable that can influence the rate of calcification of marine organisms. The aragonite saturation state ( $\Omega_a$ ) is the ratio of the ion concentration product ( $[Ca^{2+}] \times [CO_3^{2-}]$ ) to the solubility product ( $K^*_{sp}$ ) for the mineral aragonite at the *in situ* conditions of temperature, salinity and pressure. Studies have determined that chemical precipitation is proportional to  $\Omega$ : the greater the ion concentration product the greater the rate of formation of the mineral [*Burton and Walter*, 1987; *Inskeep and Bloom*, 1985; *Zhong and Mucci*, 1989; *Zuddas and Mucci*, 1998]. The relationship is described by a rate law of the form

$$R=k(\Omega_a-1)^n$$
 Eq. 1

where k is the rate constant and n is the order of the reaction. There is some controversy as to whether in the case of aragonite precipitation in seawater n=1 [*Inskeep and Bloom*, 1985] or n= 1.8 to 2.4 [*Zhong and Mucci*, 1989]. Studies on hermatypic corals [*Gattuso et al.*, 1998; *Marubini et al.*, 2001; *Marubini et al.*, 2002; *Reynaud et al.*, 2003], coralline algae [*Agegian*, 1985; *Borowitzka*, 1981; *Gao et al.*, 1993a], coccolithophorids [*Riebesell et al.*, 2000; *Sciandra et al.*, 2003; *Zondervan et al.*, 2001], foraminifera [*Bijma et al.*, 1999], echinoderms [*Shirayama*, 2004], mesocosm coral reef communities [*Langdon et al.*, 2000; *Leclercq et al.*, 2000; *Leclercq et al.*, 2002] and natural coral reef ecosystems [*Broecker et al.*, 2001; *Ohde and Woesik*, 1999; *Suzuki et al.*, 1995] have shown that the

calcification of a diverse selection of organisms and natural systems is also strongly dependent on  $\Omega$ .

#### 1.3 Connection between fossil fuel CO<sub>2</sub> and saturation state

The saturation state of the surface ocean is to a large extent controlled by the concentration of  $CO_2$  in the overlying atmosphere. The response time the oceanic mixed layer to equilibration with the atmosphere lies in the range of several months to several years [Broecker, 1974]. This means that as the  $CO_2$  of the atmosphere builds up the ocean will follow the forcing by the atmosphere with a time lag of several months to several years. Currently the oceans are taking up 2 Pg C  $y^{-1}$  and the cumulative uptake between pre-industrial times and 1990 is estimated to have been 118 Pg [Sarmiento and Gruber, 2002]. When CO<sub>2</sub> dissolves in seawater, less than 1% remains as CO<sub>2</sub>aq, the balance forms carbonic acid which disassociates to form  $H^+$  and  $HCO_3^-$ . The decrease in pH causes some of the  $CO_3^{2-}$  to combine with H<sup>+</sup> to form  $HCO_3^{-}$ . The end result is an increase in  $[CO_2 \text{ aq}]$  and  $[HCO_3^-]$  and a decrease in  $[CO_3^{2-}]$ . Since  $[CO_3^{2-}]$  decreases the saturation state also decreases. Kleypas et al. [1999] calculated that the average  $\Omega_a$  in the tropics was 4.6 in 1880. It has dropped to a present day value of 4.0, and it could drop to 3.1 by 2065 and to 2.8 by 2100 if  $CO_2$  emissions continue as projected by the Intergovernmental Panel on Climate Change (IPCC) IS92a "Business as Usual" scenario [Houghton et al., 1995].

### 1.4 Source of inorganic carbon for photosynthesis and calcification

There are very limited data on the source and transport mechanisms of the inorganic carbon used for coral calcification. Radioisotopic tracer experiments have demonstrated that DIC from seawater is incorporated into the skeleton [*Goreau*, 1961; *Goreau*, 1963; *Taylor*, 1983]. Erez [1978] showed using a double labeling experiments (<sup>14</sup>C and <sup>45</sup>Ca) that a large fraction of the  $CO_3^{2-}$  incorporated into coral skeletons could come from metabolic  $CO_2$ . Considerably more is known about the source and transport mechanisms of inorganic carbon used for photosynthesis by the zooxanthallae. This may be applicable to calcification if the two processes share the same internal pool of DIC. Allemand et al. [1998] have reviewed what is known about the acquisition of carbon for

endosymbiont photosynthesis in corals. The immediate source of the carbon used by the zooxanthallae is that available in the cytoplasm of the host anthozoan cell. This in turn is derived to a significant extent from the external seawater. Al-Moghrabi et al. [1996] and Goiran et al. [1996] demonstrated that  $HCO_3^-$  is actively transported across the epithelia of the host cell by an anion carrier that is sensitive to DIDS. Once in the cytoplasm of the host cell the  $HCO_3^-$  is converted to  $CO_2$  and  $CO_3^{2-}$  by carbonic anhydrase. This carbon concentrating mechanism (CCM) produces the high concentration of CO<sub>2</sub> that is required by the Form II Rubisco enzyme of the zooxanthallae to efficiently fix carbon. The photosynthetic rate of corals does not seem to be limited by the DIC supply in seawater [Burris et al., 1983; Goiran et al., 1996]. However, Weis [1993] showed that photosynthesis of the sea anemone Aiptasia pulchella did not saturate until a DIC concentration of 5 mM. Also CO<sub>2</sub> enrichment has been found to increase the photosynthesis of microalgae [Riebesell, 1993], macroalgae [Borowitzka and Larkum, 1976; Gao et al., 1993b] and seaweeds [Zimmerman et al., 1997]. It is possible that under conditions of CO<sub>2</sub> enrichment the energy-costly CCM mechanism in corals may be deactivated resulting in usage of external CO<sub>2</sub> as it becomes more available relative to  $HCO_3^{-}$  [Beardall et al., 1998]. Finally, active transport of  $CO_3^{-2}$  is known in animal systems [Boron, 2001] but has not been demonstrated to occur in corals [Goiran et al., 1996].

#### **1.5 Interactions between photosynthesis and calcification**

The interactions between photosynthesis and calcification in corals are complex. There is a very strong correlation between photosynthesis and calcification at both the organism and community level [*Gattuso et al.*, 1999]. However, as noted above, nutrient enrichment can result in an uncoupling resulting in an increase in photosynthesis and a decrease in calcification [*Ferrier-Pages et al.*, 2000; *Hoegh-Guldberg and Smith*, 1989; *Marubini and Davies*, 1996; *Marubini and Thake*, 1999; *Stambler et al.*, 1991]. This observation has given rise to the hypothesis that the photosynthesis and calcification may compete for the same supply of DIC. Environmental conditions that stimulate the photosynthetic activity of the zooxanthallae such as enrichment of nutrients or CO<sub>2</sub> may draw down the internal DIC pool in the host cell and result in less  $CO_3^{2-}$  available for

calcification. In this situation the increase in  $[CO_3^{2^-}]$  due the pH shift caused by photosynthesis is out weighed by the decrease in  $[CO_3^{2^-}]$  due to the overall reduction of DIC due to demand outstripping supply by the active uptake of  $HCO_3^{-}$ . For the scheme to work the zooxanthallae must have a greater call on the available DIC than the calcioblastic epithelial cells. This may be explained by the carbon concentrating mechanism.

### 1.6 Cellular mechanism of saturation state control of calcification

Calcification is performed by the cells of calicoblastic epithelium. These cells are separated from the calcium carbonate skeleton by a thin layer of fluid known as the extracellular calcifying fluid or ECF. It is here that the  $Ca^{2+}$  and  $HCO_3^{-}$  or  $Ca^{2+}$  and  $CO_3^{2-}$  combine to form the calcium carbonate mineral aragonite. The cells of the calicoblastic epithelium are separated from the seawater within the oral cavity or coelenteron by a single-cell-thick aboral ectoderm. The advective exchange of water within the coelenteron may be too slow to supply the calcium and carbon required for photosynthesis and calcification [Wright and Marshall, 1991]. The calcium and DIC pools in the coelenteron can also be resupplied by passive or active transport of  $Ca^{2+}$  and  $HCO_3$  across the two-cell-thick oral epithelial layer that separates the coelenteron for the ambient seawater. The reader should see [Gattuso et al., 1999] for an excellent review on the pathways whereby  $Ca^{2+}$  ions and DIC can reach the ECF.  $Ca^{2+}$  can reach the ECF by transcellular transport (energy-dependent), by paracellular diffusion or by advection (both energy-independent), or by a combination of all processes. The active pathway involves an enzyme-mediated step that is saturated at the ambient concentration of  $Ca^{2+}$  in seawater in some species [Chalker, 1976; Tambutte et al., 1996] and not in others [Chalker, 1976; Krishnaveni et al., 1989].

Calcification and photosynthesis are thought to share a common DIC pool which is the cytosol of the host cell. Ultimately the DIC could come from seawater via active or passive pathways or internally via metabolism. Irrespective of its source, the calicoblastic cells obtain DIC for calcification by transporting  $HCO_3^-$  from this pool via some form of anion-carrier mechanism [*Tambutte et al.*, 1996].

The cellular mechanism involved in the response of calcification to increased pCO<sub>2</sub> observed widely at the organismal and community level is not known. Unfortunately there are no data available on the response of the chemistry of the ECF to changes in the pCO<sub>2</sub> or saturation state of the ambient seawater. Therefore this discussion of the mechanism of calcification must be based on conjecture. The simplest mechanism to explain how changes in the  $[Ca^{2+}]$  and  $[CO_3^{2-}]$  in the seawater can influence the ECF is to assume that there is a paracellular pathway whereby the ions diffuse through the junctions between cells without crossing cell membranes directly to the site of calcification. Most published models of coral calcification include this pathway although active transport is though to more important [*Furla et al.*, 2000; *Gattuso et al.*, 1999; *Tambutte et al.*, 1996]. This mechanism has the attraction of explaining why Sr, Cd, Pb, Mn, Ba, U are incorporated into the skeleton in the same ratios they are found in seawater [*Dunbar and Cole*, 1993].

Active transport of calcium could be consistent with the saturation state hypothesis if the rate of calcium transport saturates at a  $Ca^{2+}$  concentration above the ambient concentration of seawater as has been reported for some coral species [*Chalker*, 1976; *Krishnaveni et al.*, 1989]. Elevated pCO<sub>2</sub> results in an increase in the external HCO<sub>3</sub><sup>-</sup> concentration so a limitation of the supply of DIC can not be invoked to explain the decrease in calcification. Increased pCO<sub>2</sub> could result in decreased calcification if photosynthesis and calcification compete for the same internal supply of DIC in the host cell (see section on *Interactions between photosynthesis and calcification*). Finally, as Gattuso et al. [1999] noted, the pH decrease associated with the pCO<sub>2</sub> increase could cause changes membrane permeability and conductance or in the activity of an enzyme involved in some critical pathway.

An understanding of how coral calcification responds to increased  $pCO_2$  and how that response may vary depending on changes in other environmental factors is critical to predicting how coral reefs may change in the next 50 to 100 years in response to global environmental change. In this study we report the effects of a doubling in  $pCO_2$  on an assemblage of Hawaiian corals (*Porites compressa* and *Montipora capitata*) under summer and winter conditions. Both net photosynthesis and calcification were measured because they both draw from the same internal pool of DIC and hence might be expected

to interact. We also investigated the effect of a 10X nutrient loading because previous work has shown that its effect on calcification may provide an analog for how elevated  $pCO_2$  affects calcification. Due to logistical considerations we had to limit the elevated  $pCO_2$  treatments to 1.5 h. We also did not have the ability to heat the water in the flume to simulate the effects of greenhouse warming. In recognition of these limitations caution should be exercised in extending the results of this study to predicting the response to global environmental change.

# 2. Methods

# 2.1 Notation

| NP <sub>C</sub>              | net carbon fixation, mmol C m <sup>-2</sup> time <sup>-1</sup>                                                                       |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| NPo                          | net oxygen evolution rate, mmol $O_2 \text{ m}^{-2}$ time <sup>-1</sup>                                                              |
| NP <sub>max</sub>            | light saturated rate of net production, mmol m <sup>-2</sup> time <sup>-1</sup>                                                      |
| P <sub>G</sub>               | gross primary production, mmol C m <sup>-2</sup> time <sup>-1</sup>                                                                  |
| R                            | dark respiration rate, mmol C m <sup>-2</sup> time <sup>-1</sup>                                                                     |
| α                            | photosynthetic efficiency, mmol C m <sup>-2</sup> h <sup>-1</sup> ( $\mu$ mol quanta m <sup>-2</sup> s <sup>-1</sup> ) <sup>-1</sup> |
| $I_k$                        | light saturation parameter, $\mu$ mol quanta m <sup>-2</sup> s <sup>-1</sup>                                                         |
| Ic                           | compensation irradiance, $\mu$ mol quanta m <sup>-2</sup> s <sup>-1</sup>                                                            |
| G                            | net calcification, mmol CaCO <sub>3</sub> m <sup>-2</sup> time <sup>-1</sup>                                                         |
| $k_{PAR}$                    | diffusion attenuation coefficient for photosynthetically available irradiance, m <sup>-1</sup>                                       |
| k                            | rate constant, mmol CaCO <sub>3</sub> m <sup>-2</sup> time <sup>-1</sup>                                                             |
| $\Omega_{a}$                 | saturation state with respect to aragonite                                                                                           |
| K <sup>*</sup> <sub>sp</sub> | apparent stoichiometric solubility product for aragonite                                                                             |
| n                            | order of reaction                                                                                                                    |
| $A_{C}$                      | area of flume covered by coral assemblage, $2.2 \text{ m}^2$                                                                         |
| $A_F$                        | total surface of water in flume, 8 m <sup>2</sup>                                                                                    |
| S                            | solubility of CO <sub>2</sub> in seawater at specified temperature and salinity, µmol kg <sup>-1</sup> µatm <sup>-1</sup>            |
| $V_{\rm f}$                  | volume of seawater in flume, 2.4 m <sup>3</sup>                                                                                      |
| pCO <sub>2,w</sub>           | partial pressure of CO <sub>2</sub> in seawater                                                                                      |
| ρ                            | density of seawater, kg m <sup>-3</sup>                                                                                              |
| k <sub>CO2</sub>             | gas exchange coefficient of CO <sub>2</sub>                                                                                          |
| k <sub>O2</sub>              | gas exchange coefficient of O <sub>2</sub>                                                                                           |
| U                            | wind speed, m s <sup>-1</sup>                                                                                                        |
| $\Delta DIC$                 | change in dissolved inorganic carbon, mmol C m <sup>-3</sup>                                                                         |
| $\Delta TA$                  | change in total alkalinity, mEq m <sup>-3</sup>                                                                                      |
| $\Delta O_2$                 | change in dissolved oxygen, mmol $O_2 \text{ m}^{-3}$                                                                                |
| $\Delta t$                   | measurement interval, h                                                                                                              |
|                              |                                                                                                                                      |

# 2.2 Experimental setup

Specimens of *Porites compressa* and *Montipora verucosa* (*capitata*) were collected from the Coconut Island reef flat, Hawaii Institute of Marine Biology, Kaneohe, Hawaii, USA, brought to the island, and then placed in an experimental flume, 24-m long, 0.40-m wide

and 0.4-m deep (see Atkinson and Bilger [1992] for a discussion of the design of the flume). The experimental community covered a 2.2  $m^2$  (5.5-m by 0.4-m) area of the flume. Water was recirculated through the flume throughout the experiments. Water velocities past the experimental community were controlled at 20 or 40 cm s<sup>-1</sup>. At night and between the experiments fresh seawater from 100 m offshore was pumped thru the flume at a rate of 20 L min<sup>-1</sup> resulting in a water residence time of 2 h. The ratio of water volume to planar surface of the coral community was 1.1 m. Collections of coral were performed before the summer and winter experiments. Care was taken to prepare the coral assemblage in the flume the same each time. The flume received full natural sunlight. Photosynthetically available irradiance incident on the flume was measured with a LiCor 192 cosine collector sensor located on the top of a nearby building. The temperature and  $O_2$  concentration of the water in the flume was monitored continuously with an Endeco 1127 pulsed O<sub>2</sub> sensor. The accuracy of the O<sub>2</sub> sensor was checked frequently against Winkler determined oxygen concentrations. Water samples were drawn from the flume for analysis of total alkalinity (TA) and total dissolved inorganic carbon (DIC). The CO<sub>2</sub> parameters (pH,  $[CO_2]$ ,  $[HCO_3^-]$ ,  $[CO_3^{2-}]$  and  $\Omega_a$ ) were computed from TA, DIC, temperature and salinity using the program CO2SYS [Lewis and Wallace, 1998]. Nutrient concentrations and nutrient uptake were measured only during the January 2000 experiments.

#### 2.3 Overview of experiments

Prior to beginning the CO<sub>2</sub> experiments, net production and calcification of the coral assemblage were measured throughout the light period over three days (August 21-24, 1999) in a series of 5-6 one hour incubations. These data allowed us to determine that net production and calcification were light saturated between 09:00 and 17:30 during the summer experiment and 10:30 and 15:00 h during the winter experiment. All future experiments were run between these hours to minimize variability due to fluctuations in irradiance. A preliminary experiment was also conducted to investigate the effect of flow velocity. Ten incubations were performed at a flow of 40 cm s<sup>-1</sup> and eight at a flow of 20 cm s<sup>-1</sup>. It was found that the rates at the two velocities were not significantly different. All subsequent incubations were performed at 20 cm s<sup>-1</sup> because this minimized gas

exchange.

The interactive effects of  $CO_2$  and seasonal change in temperature and irradiance on net production and calcification were investigated in a series of incubations performed during summer (August 26 – Sep. 1, 1999) and winter (January 7-18, 2000) conditions. During the summer experiment eighteen incubations were done at ambient  $pCO_2$  (460 µatm) and nine at 1.7X ambient (789 µatm). During the winter experiment a nutrient enrichment was added as a factor. Six incubations were run under ambient nutrients; three at ambient pCO<sub>2</sub> (391  $\mu$ atm), two at 1.3X (526  $\mu$ atm) and one at 2.0X pCO<sub>2</sub> (781 µatm). These experiments were followed by a four day period during which the flume was spiked each day with 0.03 mol of PO<sub>4</sub> and 0.3 mol of NH<sub>4</sub>. This raised [PO<sub>4</sub>] to 13  $\mu$ M and [NH<sub>4</sub>] to 109  $\mu$ M. The corals were exposed to the nutrient enriched water for 4 h. Nutrient concentrations were measured at the beginning and end to determine the uptake rate. Following four hours of exposure to the elevated nutrients the flume was drained, refilled, and continuously flushed with low nutrient ambient seawater until the next incubation. The intention of the enrichment treatment was not to simulate a particular eutrophication scenario but to fully saturate the internal nutrient pools of the corals and thereby gain a perspective of the maximum impact that nutrients might have on the response of net production and calcification to elevated  $pCO_2$  in the short term. Following this conditioning, with the corals again exposed to ambient nutrient concentrations but their internal pools saturated with nutrients, we ran incubations measuring net photosynthesis, calcification and nutrient uptake at four different  $pCO_2$ levels; six at ambient (380 µatm), two at 1.4X (527 µatm), six at 1.9X (733 µatm) and one at 0.6X (219 µatm).

#### 2.4 Experimental protocol

Every morning, before the experiments began, the sidewalls and bottom of the flume were brushed to remove filamentous algae. The seawater in the flume was drained and the flume was filled with fresh seawater. The seawater inlet was closed. The water was recirculated in the flume at a velocity of 20 or 40 cm s<sup>-1</sup>. One ambient and one elevated  $pCO_2$  incubation was run each day. If the incubation was an elevated  $pCO_2$  run 20-40 ml of concentrated HCl was added. In the case of the sub-ambient incubation 40 ml of

concentrated NaOH was added. The acid or base was pre-diluted in a 10 gal bucket and slowly added to the flowing water. This prevented a large spike in pH and ensured rapid mixing. After 30 min of mixing, water sampling began. Initially water samples were taken every 30 min but it was determined that this didn't add much to the accuracy of the rates or to the determination of the average chemical conditions during the 1.5 h incubations. Therefore during the incubations in January 2000 only initial and final water samples were taken. Following the incubation the flume was immediately drained and refilled with ambient seawater. During the draining the corals were exposed to the air for no more than 2-3 minutes. There was no evidence that the aerial exposure or the elevated  $pCO_2$  treatments were detrimental to the corals as indicated by the fact that net production at ambient  $pCO_2$  remained constant from the beginning to the end of the experiment.

#### 2.5 Control of carbonate chemistry

In these experiments pCO<sub>2</sub> was adjusted by manipulating TA by addition of acid or base while holding DIC constant. In the ocean the opposite occurs. The DIC concentration of the surface ocean increases due to invasion of  $CO_2$  from the atmosphere while TA remains constant. There are some subtle differences in the carbonate chemistry of seawater between when the  $pCO_2$  is doubled by increasing DIC and when it is doubled by decreasing the TA. To illustrate, assume that we start with seawater at a temperature of 25°C and 35 psu and an initial TA of 2300 µEq kg<sup>-1</sup> and DIC of 1973 µmol kg<sup>-1</sup>. This water will have a  $pCO_2$  of 350 µatm and a pH of 8.08 on the seawater scale. If the DIC is increased to 2109 µmol kg<sup>-1</sup>, the pCO<sub>2</sub> will become 700 µatm, the pH will drop to 7.83 and the  $[HCO_3^-]$  and  $[CO_3^{2-}]$  will become 1944 and 145 µmol kg<sup>-1</sup>, respectively. Now if instead we lower the TA of the same initial seawater to 2144  $\mu$ Eq kg<sup>-1</sup> without changing the DIC the resulting seawater has a pCO<sub>2</sub> of 700  $\mu$ atm, a pH of 7.80, [HCO<sub>3</sub><sup>-</sup>] of 1825  $\mu$ mol kg<sup>-1</sup> and a [CO<sub>3</sub><sup>2-</sup>] of 128  $\mu$ mol kg<sup>-1</sup>. The pH of the resulting seawater is virtually identical and in both cases the  $HCO_3^{-1}$  increases and the  $CO_3^{-2-1}$  decreases. The differences are that in the decreased TA case the  $[HCO_3]$  increase is smaller (5% vs. 12%) and the  $[CO_3^{2-}]$  decrease is larger (45% vs. 37%) compared to the natural setting. The ratio of  $[HCO_3^{-1}]/[CO_3^{2-1}]$  following a doubling in pCO<sub>2</sub> is 13.4 in the natural case and 14.3 in the

reduced TA case, a difference of 6%. These differences should be borne in mind but it would seem unlikely that experiments based on the manipulation of TA will yield results fundamentally different from the natural case (DIC increase at constant TA).

Addition of acid or base was made 30 min before the start of a run in order to allow time for the system to become well mixed. The chemical addition raised or lowered the  $pCO_2$  putting the system out of equilibrium with the atmosphere. As a result there was a flux of  $CO_2$  into or out of the water due to gas exchange. Our calculations of net production and calcification take gas exchange into account. However, gas exchange will cause the carbonate chemistry to change over the course of the measurement period. It is straight forward to calculate this change. During the 2X pCO<sub>2</sub> runs the air-water pCO<sub>2</sub> differential is 370 µatm. The flux of CO<sub>2</sub> to the atmosphere is  $(5 \text{ m d}^{-1})(1.5 \text{ h}/24 \text{ m})$ h)(0.027 mmol m<sup>-3</sup>  $\mu$ atm<sup>-1</sup>)(370  $\mu$ atm)(8 m<sup>2</sup> flume SA)/(2.4 m<sup>3</sup> flume volume) or 10 mmol  $m^{-3}$  (1.5 h)<sup>-1</sup>. This loss of CO<sub>2</sub> would cause a 7% decrease in pCO<sub>2</sub>, 0.03 unit pH increase, and a 5% increase in  $[CO_3^{2-}]$  and  $\Omega_a$ . It is apparent that the effect of gas exchange in negligible. More important is the effect that photosynthesis and calcification will have on the carbonate chemistry. The dimensions of the flume and the duration of the experiments were carefully chosen to ensure that the changes in TA, DIC and  $O_2$ would be big enough to quantify the rates precisely but not so big that the carbonate chemistry would change significantly between the beginning and end of a run. In practice, the decrease in pCO<sub>2</sub> from start to end of an incubation averaged 12% at ambient pCO<sub>2</sub> and 23% at 2X pCO<sub>2</sub>. The variability in terms of standard deviation in pCO<sub>2</sub>, pH and  $\Omega_a$  over a 1.5 h incubation was ±60 µatm, ±0.03 units, and ±0.1, respectively.

#### 2.6 Analytical methods

Water samples for total dissolved inorganic carbon (DIC), total alkalinity (TA) and dissolved oxygen were collected in glass bottles at the beginning and end of each 1 ½ h measurement period. DIC was determined coulometrically [*Chipman et al.*, 1993]. Analyses were run in triplicate, and the precision (1 $\sigma$ ) and accuracy were estimated to be  $\pm 1 \mu mol kg^{-1}$ . The TA was determined in triplicate using an automated Gran titration. The precision was typically  $\pm 2-3 \mu Eq kg^{-1}$ . Accuracy of both the DIC and TA analyses

were checked against certified seawater reference material prepared by Andrew Dickson (Scripps Institute of Oceanography). The concentrations of  $HCO_3^-$ ,  $CO_3^{-2-}$ , pH, pCO<sub>2</sub> and  $\Omega_a$  were calculated using the CO2SYS program written by Ernie Lewis (Brookhaven National Laboratory) using the dissociation constants of Mehrbach [1973] as refit by Dickson and Millero [1987]. Dissolved oxygen concentration was measured by Winkler titration using an automated titrator employing amperometric endpoint detection. Precision is estimated to be  $\pm 0.2 \mu mol L^{-1}$ . Analyses for nutrients (phosphate, nitrate, nitrite, ammonium and silicate) were performed using a Technicon AAII system, with standard procedures modified for high-precision analyses (Technicon Industrial Systems; Industrial methods for water, seawater, and wastewater analysis). Nutrient analyses were performed by Ted Walsh, SOEST Nutrient Analytical Lab.

#### 2.7 Measurements of net production and calcification

The calcification rate was determined by the alkalinity anomaly method. This method assumes that precipitation of one mole of CaCO<sub>3</sub> reduces the total alkalinity by two equivalents. Deviations from this simple stoichiometry can occur in response to production and degradation of organic carbon through assimilation and remineralization of nitrate [*Brewer and Goldman*, 1976]. However, it is unlikely that such processes would be occurring in the flume. Changes in the concentration of NO<sub>3</sub> and NH<sub>4</sub> during an incubation could contribute no more than  $\pm 0.3 \ \mu \text{Eq} \ \text{kg}^{-1}$  to the change in TA, much less than the precision of the analysis. The net calcification rate of the corals in the flume was computed according to

$$G = -0.5\rho \left(\frac{1000L}{1m^3}\right) \left(\frac{1mmol}{1000\,\mu mol}\right) \left(\frac{V_F}{A_C}\right) \Delta TA / \Delta t$$

where G is the net calcification rate in mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup>, -0.5 is the stoichiometric conversion from  $\mu$ Eq of TA removed to  $\mu$ moles of CaCO<sub>3</sub> produced,  $\rho$  is the density of seawater (1.025 kg L<sup>-1</sup>), V<sub>F</sub> is the volume of seawater in the flume (2.4 m<sup>3</sup>), A<sub>C</sub> is the planar surface of the assemblage of coral (2.2 m<sup>2</sup>),  $\Delta$ TA is the change in total alkalinity in

 $\mu$ Eq kg<sup>-1</sup> and  $\Delta$ t the elapsed time between TA measurements in hours. The net production of organic carbon was computed according to

$$NP_{C} = -\left(\frac{1}{A_{C}}\right)\left[V_{F}\rho\left(\frac{\Delta DIC}{\Delta t} - 0.5\frac{\Delta TA}{\Delta t}\right) + A_{F}Sk_{CO2}\left(pCO_{2,W} - 370\right)\right]$$

where NP<sub>C</sub> is the net carbon production in mmol C m<sup>-2</sup> h<sup>-1</sup>,  $\Delta$ DIC is the change in total dissolved inorganic carbon, A<sub>F</sub> is the surface area of the flume (8 m<sup>2</sup>), S is the solubility of CO<sub>2</sub> in seawater at ambient temperature and salinity (0.027mmol CO<sub>2</sub> m<sup>-3</sup> µatm<sup>-1</sup>), k<sub>CO2</sub> is the gas exchange coefficient for CO<sub>2</sub> in m h<sup>-1</sup>, pCO<sub>2,W</sub> is the partial pressure of CO<sub>2</sub> in the water, and 370 is the partial pressure of CO<sub>2</sub> in the overlying atmosphere in µatm. The net oxygen production was computed according to

$$NP_{O} = \left(\frac{1}{A_{C}}\right) \left[V_{F} \frac{\Delta[O_{2}]}{\Delta t} + A_{F}k_{O2}\left([O_{2}] - C^{*}\right)\right]$$

where  $\Delta[O_2]$  is the change in dissolved oxygen concentration in mmol m<sup>-3</sup>, k<sub>O2</sub> is the gas exchange coefficient for O<sub>2</sub> in m h<sup>-1</sup> and C<sup>\*</sup> is the oxygen concentration in equilibrium with the atmosphere at the prevailing temperature and salinity of the seawater (205.1 mmol m<sup>-3</sup> in August and 217.6 mmol m<sup>-3</sup> in January).

#### 2.8 Estimation of gas exchange rate

The gas exchange rate of oxygen was determined by bubbling the water in the flume with pure  $O_2$  gas to elevate the concentration and then observe the rate with which it decreased over time. Dead corals were placed in the flume to simulate the bottom roughness of the live corals. Current speed was varied between 14 and 34 cm s<sup>-1</sup>. A regression of  $k_{O2}$  versus current speed yielded the relationship

$$k_{02} = 0.167U - 1.38$$

where U is the current speed in cm s<sup>-1</sup>.  $k_{CO2}$  was calculated from  $k_{O2}$  according to the Schmidt number relationship

$$k_{CO2} = k_{O2} \left(\frac{487}{432}\right)^{-0.5}$$

where 487 and 432 are the Schmidt numbers of CO<sub>2</sub> and O<sub>2</sub>, respectively.

# 2.9 Statistical analysis

The significance of  $CO_2$  and nutrient treatment effect on photosynthesis and calcificaton was tested by Student's t-test. Least-squares linear regression was used to determine the significance of relationships between photosynthesis and  $[CO_2aq]$  and between calcification and  $\Omega_a$ . Significance reported below indicates that the probability of falsely rejecting the null hypothesis is <0.05. All uncertainties in the text, tables and figures are 95% confidence intervals unless n=2 or 3 in which case the standard error (SE) is given.

### 3. Results

#### 3.1 Physical and chemical setting

The seasonal variability in water temperature and photosynthetically available radiation (PAR) over the period January 1, 1999 to December 31, 2000 are shown in Fig. 1A and 1B. Winter temperatures can be quite variable ranging from  $21.0^{\circ}$ C to  $25.0^{\circ}$ C. Summer temperatures are less variable ranging from  $25.2^{\circ}$ C to  $27.6^{\circ}$ C. PAR irradiance goes through a minimum of 17-21 mol quanta m<sup>-2</sup> d<sup>-1</sup> in December and January and peaks around 40 mol quanta m<sup>-2</sup> d<sup>-1</sup> in June and July. It can be seen that the conditions during the experimental periods of this study, signified by the gray bars, fall close to the annual minimum and maximum in temperature and light. The mean and 95% confidence intervals of the ambient physical and chemical conditions during the experiments are given in Table 1. The pCO<sub>2</sub> of the water at the intake to the flume from August 23 to September 2, 1999 was  $513\pm22$  µatm and from January 7-17, 2000 was  $408\pm9$  µatm. The pCO<sub>2</sub> of nearby offshore waters at the Hawaiian Ocean Time Series station was 370

μatm in August 1999 and 341-355 μatm during the period December 1999 to February 2000 (http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html). The oxygen concentration of the water over the same periods was  $209\pm7 \mu mol kg^{-1}$  (2.6%) supersaturated) in August 1999 and 230 $\pm$ 7 µmol kg<sup>-1</sup> (5.6% supersaturated) in January 2000. The positive pCO<sub>2</sub> differential ( $\Delta pCO_2$ ) of 38 to 143 µatm between the water at the study site and the atmosphere indicates that the southern portion of Kaneohe Bay is a source of  $CO_2$  to the atmosphere. There must be significant rates of net calcification and/or respiration in the bay to support that flux given that the  $\Delta pCO_2$  of the oceanic water entering the bay is 0 to -22 µatm. Given that the bay water is supersaturated with respect to oxygen indicates that community carbon production exceeds respiration and is a sink for  $CO_2$ . The fact that the bay is a net source of  $CO_2$  indicates that calcification is producing more  $CO_2$  than is consumed by net production. The elevated p $CO_2$  in the bay water causes a depression of the  $CO_3^{2-}$  concentration (173-185 µmol kg<sup>-1</sup>) and  $\Omega_{a}$  (2.8-2.9) relative to that of nearby offshore waters at the Hawaiian Ocean Time Series Station, 229±6 umol kg<sup>-1</sup> and 3.6±0.1, respectively. Nutrient concentrations were only measured in January. They were: PO<sub>4</sub> 0.17±0.02 µM, NO<sub>3</sub>+NO<sub>2</sub> 0.3±0.1 µM, NH<sub>4</sub> 0.28±0.06 µM and SiO<sub>3</sub> 6.0±0.3 µM. These are typical levels for coral reefs [Atkinson and Falter, 2003].

# 3.2 Effects of irradiance on net production and calcification

The photosynthesis-irradiance and calcification-irradiance relationship for the coral assemblage was determined in August by measuring the rate of production and calcification throughout the course of the day for several days. The rate of NP<sub>C</sub> was found to be well described by a hyperbolic tangent function (Fig. 2A),  $r^2=0.75$  (n=34). The best fit parameters defining the curve were: NP<sub>max</sub> = 50±3 mmol C m<sup>-2</sup> h<sup>-1</sup>,  $\alpha$  = 0.13±0.03 mmol C m<sup>-2</sup> h<sup>-1</sup> (µmol quanta m<sup>-2</sup> s<sup>-1</sup>)<sup>-1</sup>, R = 10±6 mmol C m<sup>-2</sup> h<sup>-1</sup>. The light saturation parameter, I<sub>k</sub>, was 586±108 µmol quanta m<sup>-2</sup> s<sup>-1</sup> and the compensation intensity, I<sub>c</sub>, was 80±33 µmol quanta m<sup>-2</sup> s<sup>-1</sup>. The calcification data had too much scatter to justify the fitting of a hyperbolic tangent curve, however, rates did exhibit a general trend with irradiance, increasing from a dark rate of 3±3 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> to a rate of

20-27 mmol CaCO3 m<sup>-2</sup> h<sup>-1</sup> at 1300-1700 µmol quanta m<sup>-2</sup> s<sup>-1</sup> (Fig. 2B).

From these curves we learned that the net production of the coral assemblage saturated at an irradiance of 586 µmol photons m<sup>-2</sup> s<sup>-1</sup>. Examination of the light data revealed that the irradiance exceeded this level between 9:00 and 17:00 h in August and between 10:30 and 14:30 h in January. The calcification data did not yield a calcification-irradiance relationship with a well defined saturation response. However, Marubini et al. [2001] found that the calcification rate of *P. compressa* saturated at an irradiance of 250 µmol photons m<sup>-2</sup> s<sup>-1</sup>. Based on these results we decided that it would be possible to run two incubation experiments each day; one from 10:00 to 11:30 h, and a second from 12:30 to 14:00 h. By restricting the incubations to the hours 10:00-14:00 and centering them around noon we ensured that light levels would generally be saturating and the corals would receive approximately the same amount of light.

Taking the measurements of incident irradiance made at the Coconut Point Reef weather station for the period August 21- September 1, 1999 and applying a diffuse attenuation coefficient ( $k_{PAR}$ ) of 0.18 m<sup>-1</sup>, based on measurements in Kaneohe Bay, we computed the average hourly irradiance at 3 m depth, the mean depth of the reef flats in Kaneohe Bay. Using the photosynthesis- and calcification-irradiance models given in Fig. 2A and 2B we computed how much organic and inorganic carbon a patch of reef with the physiological characteristics of the corals in this study would produce over a typical August day,  $P_G$  452 mmol C m<sup>-2</sup> d<sup>-1</sup>, NP<sub>C</sub> 248 mmol C m<sup>-2</sup> d<sup>-1</sup> and G 238 mmol  $CaCO_3 \text{ m}^{-2} \text{ d}^{-1}$ . The ratio of mid-day calcification to gross production (G:P<sub>G</sub>) was 0.33. The ratio of daily calcification to gross production was 0.53. The ratio of mid-day calcification to night time calcification was 5.3. In the calculation of  $P_G$  we assume that the respiration rate in the light is the same as the dark. This assumption has been widely made in the coral reef literature. However, two recent studies had found that the rate of respiration in the light can be 2-12 times higher than in the dark [Al-Horani et al., 2003; Langdon et al., 2003]. In the case of the Langdon et al. (2003) study the assumption that light equaled dark respiration resulted in a 40% underestimation of the true rate of gross production.

# 3.3 Effect of flow velocity on net photosynthesis and calcification

Experiments were conducted in August to see whether variations of flow velocity would affect net photosynthesis or calcification rates. Runs were made under ambient pCO<sub>2</sub> at a velocities of 20 cm s<sup>-1</sup> (n=8) and 40 cm s<sup>-1</sup> (n=10). The effect of elevated pCO<sub>2</sub> on flow dependence was not tested. There was a slight increase in NP<sub>C</sub> ( $43\pm6$  vs  $46\pm3$  mmol C  $m^{-2} h^{-1}$ ) and NP<sub>O</sub> (36±5 vs 42±4 mmol O<sub>2</sub>  $m^{-2} h^{-1}$ ) and decrease in calcification (16±4 vs  $16\pm 2 \text{ mmol CaCO}_3 \text{ m}^{-2} \text{ h}^{-1}$ ) but the changes were not significant (Student's t-test, P>0.05). There was no significant difference in the temperature or irradiance between the 20 and 40 cm s<sup>-1</sup> runs. There was a small but significant increase in  $[CO_2aq]$  from 11.6±0.6 to 13.1±0.6  $\mu$ mol kg<sup>-1</sup> and decrease in  $\Omega_a$  from 3.1±0.1 to 2.8±0.1. Within the limits of our data we see no evidence that an increase in current speed from 20 to 40 cm  $s^{-1}$  causes a significant increase in net production or calcification. We conclude that the rates of net production and calcification that we obtained in the flume are close to optimal and probably representative of those in the natural setting. Based on these results all experiments in January were performed at a current speed of 20 cm s<sup>-1</sup> because this minimized gas exchange and the change in carbonate chemistry over the course of an experimental run.

# 3.4 Seasonal changes in net production and calcification at ambient pCO<sub>2</sub> and nutrient conditions

Mid-day rates of net production showed strong seasonality (Fig. 3). NP<sub>C</sub> declined from  $45\pm3 \text{ mmol C} \text{ m}^{-2} \text{ h}^{-1}$  (n=18) in August to  $23\pm8$  (n=3) in January, a significant 49% decrease (P<0.05). NP<sub>O</sub> also decreased significantly from 37 to 23 mmol O<sub>2</sub> m<sup>-2</sup> h<sup>-1</sup> (P<0.05). Calcification did not change significantly, 16±2 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> in August versus 15.4±0.8 in January.

#### 3.5 Nutrient enrichment

The flume was spiked with 0.03 mol PO<sub>4</sub> and 0.3 mol NH<sub>4</sub> on four successive afternoons (January 10-13, 2000). This raised [PO<sub>4</sub>] to 13  $\mu$ M and [NH<sub>4</sub>] to 109  $\mu$ M. The corals took up 5.8±0.3 mmol PO<sub>4</sub> m<sup>-2</sup> (n=4) and 39±5 mmol NH<sub>4</sub> m<sup>-2</sup> during the 4-hour exposure periods (Table 2). Subsequent to the 4-day nutrient enrichment period, the uptake rates of PO<sub>4</sub>, NH<sub>4</sub> and NO<sub>3</sub> were measured under ambient conditions. Ambient

concentrations of PO<sub>4</sub>, NH<sub>4</sub> and NO<sub>3</sub> were 0.16±0.03, 0.24±0.03 and 0.26±0.05  $\mu$ mol L<sup>-1</sup>, respectively. The measured rates of uptake were 0.3±0.2 mmol PO<sub>4</sub> m<sup>-2</sup> d<sup>-1</sup> (n=10), 1.4±0.6 mmol NH<sub>4</sub> m<sup>-2</sup> d<sup>-1</sup> and 2.7±0.8 mmol NO<sub>3</sub> m<sup>-2</sup> d<sup>-1</sup> (n=10). The N:P uptake ratio under ambient conditions was 13.7. The enrichment constituted a loading of 14-times the daily P-uptake and 10-times the daily N-uptake under ambient nutrient conditions. The effect of the nutrient enrichment at ambient pCO<sub>2</sub> was to cause NP<sub>C</sub> to increase from 23±8 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> to 34±6 (P>0.05) and NP<sub>0</sub> to increase from 23±2 mmol O<sub>2</sub> m<sup>-2</sup> h<sup>-1</sup> to 30±4 (P<0.05) (Fig. 3). We can infer from this response to nutrient enrichment that the coral assemblage in January was nutrient-limited. Calcification decreased from 15.4±0.8 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> to 13.4±1 (P>0.05). More on the interactions between the nutrient and CO<sub>2</sub> treatments is given in the following section.

# **3.6** Effect of elevated pCO<sub>2</sub> on photosynthesis and calcification and interactions with seasonal change in temperature/irradiance and nutrient enrichment

The chemical conditions during the August and January incubation experiments are given in Table 3 and the corresponding rates of net production and calcification are shown in Fig. 4. In August, NP<sub>C</sub> increased significantly from  $45\pm3$  (n=18) to  $55\pm6$  (n=9) mmol C  $m^{-2} h^{-1}$  (two-tailed Student's t-test, P<0.02) in response to a 1.7-fold increase in pCO<sub>2</sub>. NP<sub>O</sub> did not change significantly, i.e.  $37\pm4$  (n=18) versus  $36\pm5$  (n=9) mmol O<sub>2</sub> m<sup>-2</sup> h<sup>-1</sup>. Calcification exhibited the greatest sensitivity to the altered seawater chemistry decreasing significantly from 16±2 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> (n=18) under ambient conditions to  $9\pm4$  (n=9) under the 1.7X conditions (P<0.05). In January, before the enrichment, NP<sub>C</sub> increased consistently with increasing  $pCO_2$  but the increase between the 1X and 1.4X levels was not significant (P=0.20). The significance of the increase at the 2X pCO<sub>2</sub> level could not be tested because there was only a single measurement. NPo exhibited no consistent trend increasing significantly from 1X to 1.4X but then declining at the 2.0X level. Calcification decreased consistently with increased pCO<sub>2</sub> from  $15.4\pm0.8$  mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> (n=3) under ambient conditions to  $11.7\pm1$  (n=2) at 1.4X and 3 (n=1) at 2.0X. The decrease in calcification from ambient to the 1.4X level was significant (P<0.05).

The effect of nutrient enrichment was to cause an increase in NP<sub>C</sub> at all pCO<sub>2</sub>

levels; 47% at ambient pCO<sub>2</sub>, 9% at 1.4X and 23% at 2X. However, the increases were not significant (P>0.05). NP<sub>O</sub> also increased at all pCO<sub>2</sub> levels; 30% at ambient pCO<sub>2</sub>, 6% at 1.4X and 62% at 2X. The increase at ambient pCO<sub>2</sub> was significant (P<0.05) but the increase at 1.4X was not (P>0.05). Nutrient enrichment had the effect of depressing calcification slightly in the ambient chemistry runs i.e.  $15.4\pm0.8$  (n=3) versus  $13\pm1$  (n=6) mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup>, however, the decrease was not significant (P>0.05). The most notable effect of the nutrient enrichment was the increased rate at 1.4X and 2X. As a result following the nutrient enrichment elevated pCO<sub>2</sub> did not cause a depression in calcification.

In order to focus just on the effect of  $[CO_2aq]$  the rates of NP<sub>C</sub> and NP<sub>O</sub> were normalized to the rate measured at ambient  $[CO_2aq]$  to remove seasonal and nutrient enrichment differences. The regression of NP<sub>C</sub> versus  $[CO_2aq]$  was highly significant  $(r^2=0.60, P=0.015)$  with a slope of  $3\pm 2\%$  (µmol kg<sup>-1</sup>)<sup>-1</sup>. In comparison, the regression of NP<sub>O</sub> versus  $[CO_2aq]$  was not significant ( $r^2=0.006, P=0.84$ ). The slopes of the NP<sub>C</sub>- $[CO_2aq]$  regression did not change significantly between summer and winter, i.e.  $1.2\pm 0.8$ (SE) vs.  $1.0\pm 0.5$  (Fig. 6). The nutrient enrichment had the effect of elevating the winter rates of NP<sub>C</sub> by 22-45% and making them less sensitive to change in  $[CO_2aq]$  as indicated by a decrease in the slope of the NP<sub>C</sub>- $[CO_2aq]$  relationship by a factor of two (Fig. 6).

Calcification was strongly related to  $\Omega_a$  (Fig. 7). In August the slope of the relationship was 6.4±1.9 (SE) mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> per unit change in  $\Omega_a$  and in January it was 9.0±2.6 (SE). The difference in slopes was not significant (P>0.05). We found that first-order saturation state model, Eq. 1, gave a good fit to the pooled summer and pre-enrichment winter data (r<sup>2</sup>=0.87, P=0.0001). The fit of the second-order saturation state model was not as good (r<sup>2</sup>=0.78, P=0.0036).

While seasonal change in temperature and light did not have a significant effect the calcification- $\Omega$  relationship the nutrient enrichment did. The loading of N and P reduced the slope of the calcification- $\Omega_a$  relationship from 9±2.6 (SE) to 1.0±0.2 (SE) mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> per unit change in  $\Omega_a$  (Fig. 8). The apparent uncoupling between calcification and  $\Omega_a$  was observed to persist for 5-days after the nutrient enrichment was discontinued.

The possibility of a competitive interaction between calcification and photosynthesis was investigated by plotting the rate of calcification against the rate of NP<sub>C</sub> for the data from the CO<sub>2</sub> and nutrient enrichment experiments (Fig. 9). The plot indicates that there was a negative interaction. In August and in January before the nutrient enrichment, CO<sub>2</sub> enrichment resulted in a decrease in calcification and increase in NP<sub>C</sub> at a ratio of -0.7 to -0.8 moles of CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> to 1.0 moles of organic C m<sup>-2</sup> h<sup>-1</sup>. Following the nutrient enrichment this relationship broke down and NP<sub>C</sub> increased with little or no change in calcification.

# 4. Discussion

4.1 Rates of photosynthesis and calcification under ambient seawater conditions The rates of net production (23-45 mmol C  $m^{-2} h^{-1}$ ) and calcification (15-16 mmol CaCO<sub>3</sub>)  $m^{-2} h^{-1}$ ) of the corals in the flume in this study compare favorably with measurements made in the field under natural conditions. Gattuso et al. [1993] reported that mid-day rates of NP<sub>C</sub> and G were 40-80 mmol C m<sup>-2</sup> h<sup>-1</sup> and 9-25 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup>, respectively, on a reef flat in Moorea, French Polynesia. On Yonge Reef, in the northern end of the Great Barrier Reef, Gattuso et al. [1996] reported mid-day rates of NP<sub>C</sub> and G of 47-111 mmol C  $m^{-2} h^{-1}$  and 8-27 mmol CaCO<sub>3</sub>  $m^{-2} h^{-1}$ , respectively. Bates et al. [2001] and Ohde and van Woesik [1999] have reported average daytime rates for reef flats in Bermuda and Okinawa of 12-17 mmol C m<sup>-2</sup> h<sup>-1</sup> and 9-12 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> for NP<sub>C</sub> and calcification, respectively. Perhaps most relevant to this study, Atkinson and Grigg [1984] observed similar summer and winter rates of NP<sub>C</sub> at French Frigate Shoals located in the same chain of islands as the present study and containing a fairly similar community. Mid-day rates of NP<sub>C</sub> averaged 51 mmol C  $m^{-2} h^{-1}$  during the summer and 25 mmol C m<sup>-2</sup> h<sup>-1</sup> during the winter, remarkably similar to the 45 and 23 mmol C m<sup>-2</sup> d<sup>-1</sup> obtained in this study. We take this as evidence that the seasonal differences in net production that we observed in this study reflect real differences in the metabolism of the corals on the reef and were not an artifact of fact that we used two different assemblages of coral in our experiments. Mid-day calcification rates at French Frigate Shoals were similar in magnitude to the rates measured in this study but exhibited a larger decline in

the winter, i.e. 23 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> during the summer and 6 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> during the winter compared to the results in this study of 16 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> in the summer and 15 mmol CaCO<sub>3</sub> m<sup>-2</sup> h<sup>-1</sup> during the winter.

# 4.2 Effect of current speed on photosynthesis and calcification

It is important to understand how current speed affects rates of coral photosynthesis and calcification both from the standpoint of designing reproducible experiments and for understanding its possible role in affecting carbon-limitation in the field. Current speed affects the thickness of the diffusive boundary layer (DBL) at the interface between the coral and the ambient seawater. The thickness of the DBL is inversely related to flux of gaseous molecules and ions between the coral and the environment. If the current speed is slow enough the DBL can become thick enough to cause mass transport limitation of the supply of a critical building block or disposal of a toxic waste product. In this study we varied the current speed between 20 and 40 cm s<sup>-1</sup> and observed that there was no significant effect on net production or calcification. Previously, Atkinson et al. [1994] varied current speed between 5.6 and 56.9 cm s<sup>-1</sup> in the same flume and found no significant change in respiration or calcification of *P. compressa*. They did not look at net production. There is experimental evidence that current speed can limit net production of corals at very low current speeds such as may be encountered in sheltered environments. Lesser et al. [1994] placed colonies of Pocillopora damicornis in respirometry chambers and found that increasing current speed from 1 to 11 cm s<sup>-1</sup> had a significant impact on NP<sub>Q</sub> causing it to increase from 38 to 56 mmol  $O_2$  m<sup>-2</sup> h<sup>-1</sup>. Here we showed that current speeds in the range of 20-40 cm s<sup>-1</sup> were sufficient to ensure that net production was not mass transport limited.

**4.3 Response of net production to pCO<sub>2</sub>, temperature, irradiance and nutrients** In this study we report for the first time evidence that a manipulation of the carbonate chemistry of seawater designed to simulate the change that may happen in the next 50-100 years had a significant effect on the net carbon production of a coral assemblage. We found that NP<sub>C</sub> increased at the rate of  $3\pm 2\%$  per 1 µmol kg<sup>-1</sup> increase in [CO<sub>2</sub>aq] (Fig. 5). Previous studies by Burris et al. [1983] and Goiran et al. [1996] found that net production of the corals *Seriatopora hystrix*, *Stylophora pistilla* and *Galaxea fascicularis* did not increase with increased DIC. Weis [1993] showed that net production of the sea anemone *Aiptasia pulchella* increased up to a DIC of 5 mM. These three studies manipulated the carbonate chemistry in a very unrealistic way. They added NaHCO<sub>3</sub> and increased the DIC 2-5 times the present day level. In the natural setting we expect DIC to increase by only 7-10%. More recent studies have modified the carbonate chemistry more realistically and they found that increasing pCO<sub>2</sub> up to 658 or 918 µatm caused no significant increase in net production [*Leclercq et al.*, 2002; *Reynaud et al.*, 2003]. These studies only looked at NP<sub>0</sub>. In this study we found that NP<sub>0</sub> did not respond to elevated [CO<sub>2</sub>aq] but that NP<sub>c</sub> did. This result suggests that the photosynthetic quotient (PQ) defined as mol of O<sub>2</sub> evolved: mol of CO<sub>2</sub> fixed must decrease as [CO<sub>2</sub>aq] is increased. The production of more carbohydrates at the expense of proteins and lipids could result in a decline in PQ. If the CO<sub>2</sub> enrichment stimulated photosynthesis but there wasn't a sufficient supply of nutrients you might expect such a shift.

The increased rates of NP<sub>C</sub> observed in this study could theoretically be due to increased availability of CO<sub>2</sub> or HCO<sub>3</sub><sup>-</sup> both of which increased in these experiments. However, the increase in [HCO<sub>3</sub><sup>-</sup>] is tiny, varying from 1691 to 1740  $\mu$ mol kg<sup>-1</sup> in the 1x through 1.8x runs. It seems unlikely that a 3% increase in [HCO<sub>3</sub><sup>-</sup>] could be responsible for the 22% increase in NP<sub>C</sub> observed in August or the 52% in January. It is more likely that the increase in NP<sub>C</sub> was due to the 2-fold increase in [CO<sub>2</sub>aq]. Perhaps under conditions of CO<sub>2</sub> enrichment the energy-costly CCM mechanism is deactivated resulting in usage of external CO<sub>2</sub> as it becomes more available relative to HCO<sub>3</sub><sup>-</sup> [*Beardall et al.*, 1998]. The increased net production would result from the energy savings in not having to produce the enzymes required for the CCM mechanism.

4.4 Response of calcification to pCO<sub>2</sub>, temperature, irradiance and nutrients We found that calcification of the coral assemblage was responsive to a short-term change in the carbonate chemistry of the seawater ( $\Delta$ pCO<sub>2</sub> increase of 329-386 µatm,  $\Delta$ [CO<sub>3</sub><sup>2-</sup>] decrease of 72-87 µmol kg<sup>-1</sup> and  $\Delta$ pH drop of 0.22-0.28 units) designed to mimic the change that may be experienced in the next 50-100 years if atmospheric pCO<sub>2</sub> doubles. This sensitivity was evident under summer (-44%) and winter conditions (-80%). Calcification was much more sensitive to change in pCO<sub>2</sub> than to seasonal change in temperature and irradiance (+4% increase from winter to summer at ambient pCO<sub>2</sub>) and to a 10x loading of N and P (-16% at ambient pCO<sub>2</sub>).

The lack of change in calcification of the *P. compressa/M. capitata* assemblage despite a 3.8°C change in temperature at first seems surprising. It is known that the calcification rate of many coral species increases with increasing temperature up to a thermal optimum and then declines [Coles and Jokiel, 1978; Jokiel and Coles, 1977; Kajiwara et al., 1995]. The results of Coles and Jokiel [1978] are particularly relevant because they studied *M. verrucosa* (*capitata*) and found that there was an interaction between light and the calcification-temperature relationship. At 40% of surface irradiance, calcification increased smoothly up to 28°C. However, at 70 and 100% of surface irradiance calcification peaked at 26°C. Looking at their curve of calcification versus temperature it can be seen that the rates at 23.4°C and 27.3°C are almost the same. If we had done experiments during the spring or fall we might have observed an effect of temperature on calcification. Another example of an interaction between temperature and  $CO_2$  effects is the study of Reynaud et al. [2003] who found that elevated p $CO_2$  had no effect on calcification of S. pistillata at 25.3°C but did cause a strong decrease at 28.3°C. These results suggest that elevated temperature aggravates the sensitivity to CO<sub>2</sub> while in this study we found that sensitivity to CO<sub>2</sub> was similar across the normal seasonal range in temperature. Only more work will reveal which response is more typical of corals in general.

The nutrient effect observed in this study (-16%) falls at the lower end of the range reported in the literature of -16% to -62% [*Ferrier-Pages et al.*, 2000; *Marubini and Atkinson*, 1999; *Marubini and Davies*, 1996; *Marubini and Thake*, 1999; *Stambler et al.*, 1991]. This may reflect the way the nutrients were administered. In the previous studies nutrient stock solutions were constantly pumped into running seawater aquaria to achieve a steady-state concentration of 1-20  $\mu$ M NO<sub>3</sub> or NH<sub>4</sub> and 2-3  $\mu$ M PO<sub>4</sub>. The treatments were typically maintained for 3-4 weeks. These experiments characterize the response to chronic, high level eutrophication, while, the present study reflects the response to episodic nutrient pulses such as might be experienced following a heavy rain

and runoff event. We also found that nutrient enrichment caused an increase in the intercept and decrease in the slope of the calcification- $\Omega$  relationship (Fig. 8), making the corals less insensitive to a change in  $\Omega$ . This is contrary to the findings of Marubini and Thake [1999] who reported that nutrient enrichment aggravated the sensitivity of *P*. *porites* to change in  $\Omega$ . It remains to be seen which response will be found to be more representative of corals in general.

In this study we found that the saturation state model (Eq. 1) did an excellent job explaining the response of calcification to change in seawater carbonate chemistry (Fig. 7). Not only did a straight line through the data explain 87% of the variability but the xintercept ( $0.9\pm0.3$  SE) was not significantly different from 1. However, until a study is performed with corals where both  $[Ca^{2+}]$  and  $[CO_3^{2-}]$  are varied and the data are found to fit Eq. 1 we can not consider that the saturation state hypothesis has been proven conclusively. At this point alternatives such as the competition hypothesis must also be considered. Photosynthesis and calcification both draw carbon from the same internal pool within the cytoplasm of the animal host cells. It has been suggested that the two processes may actually compete for carbon when demand exceeds supply [Dubinsky et al., 1990; Stambler et al., 1991]. We have looked for evidence of carbon-competition between photosynthesis and calcification by plotting one against the other (Fig. 9). We found that the ratio of the decrease in calcification to increase in NP<sub>C</sub> was -0.8:1 in August and -0.7:1 in January. This is close to the -1:1 that would be expected if the two processes were competing for the same supply of carbon. The interpretation of the postnutrient enrichment results is that supplying nutrients somehow prevents the competition.

# 4.5 Projected declines in coral calcification in the 21<sup>st</sup> century

It is of interest to use the data from this study and other published studies to make a tentative projection of how coral reef calcification may change as a consequence of the rise in atmospheric  $CO_2$ . It is important to recognize the limitations of these data at the outset. None of the studies take into account the possible synergistic effects of super-optimal temperature and elevated  $CO_2$ . Nor do they take into account the effect of eutrophication because we don't have a good model of how nutrient fluxes to reefs may change in the future. Finally, the time scale of these studies ranges from one hour to one

month. It is possible that corals that may possess the capability to adapt to elevated  $CO_2$  if given more time.

In order to facilitate comparison, the rates of calcification were expressed as a percentage of the extrapolated rate at a  $\Omega_a$  of 4.6, the estimated saturation state of the tropical ocean in 1880 when atmospheric pCO<sub>2</sub> was 280 ppm [Kleypas et al., 1999]. The normalized rates were then plotted as a function of  $\Omega_a$  (Fig. 10). The predicted relationship between calcification and saturation state based on the rate law used to explain the kinetics of chemical precipitation (Eq. 1) is indicated on the figure for the cases where the reaction is first or second order. It can be seen that the data from the present study fall along the line predicted by the saturation state model assuming a firstorder relationship (n=1). Data from the studies of Langdon et al. [Langdon et al., 2000], Broecker et al. [2001] and Reynaud et al. [2003] cluster within the space defined by the two curves describing the predicted first and second order relationships. These data predict a decline in coral and coral reef calcification of 60% (range 40-83%) by the year 2065. There is a second cluster of data from the studies of Gattuso et al. (1998), Leclercq et al. (2000), Marubini et al. (2002, 2003) and Reynaud et al. [2003] that fall along a line that describes a much smaller sensitivity to change in  $\Omega_a$ . These data predict a decline of only 1-18% by 2065.

The reason for the large difference between the low and high sensitivity data sets is not known. The species in the upper cluster may have evolved a mechanism that makes them less sensitive to changes in saturation state or to low pH and  $[CO_3^{2^-}]$ . However, we also need to consider the possibility that the differences between the two clusters of data are a result of how the experiments were performed. The study of  $CO_2$  effects on coral calcification is a new field. Methods have varied from study to study and intercomparisons of methodologies have not yet been performed. Three examples illustrate the problem. Data for *P. compressa* fall in the low sensitivity group in one study [*Marubini et al.*, 2001] and in the high sensitivity group in another (this study). Differences include the method of measuring calcification (buoyant weight vs. TA change) and the duration of the treatments (4 weeks vs. 1 ½ hour). Treatment duration may be an issue, however, the data from the present study based on 1 ½ hour exposure to reduced saturation state cluster with the data from two studies where the exposure to

reduced saturation state was held for months [*Broecker et al.*, 2001; *Langdon et al.*, 2000]. The second example is from the study of Reynaud et al. [2003] who found that data for *S. pistillata* fell in the low sensitivity cluster at 25°C but in the high sensitivity cluster at 28°C indicating that temperature effects should not be ignored. The third example is the study by Gattuso et al.[1998] that varied  $\Omega_a$  by manipulating [Ca<sup>2+</sup>] and not the carbonate chemistry. Their data for *S. pistillata* fall in the low sensitivity cluster. Was this because the study was performed at 27°C or because *S. pistillata* or corals in general are not sensitive to changes in  $\Omega_a$  per se but to some aspect of the change in carbonate chemistry associated with the rise in pCO<sub>2</sub>? To resolve these questions we need studies that compare the buoyant weight and TA change methods of measuring calcification, studies that look the interaction of temperature and CO<sub>2</sub>-sensitivity, studies that test the saturation state hypothesis by manipulating both [Ca<sup>2+</sup>] and [CO<sub>3</sub><sup>2-</sup>], and finally studies that look at how the sensitivity to elevated pCO<sub>2</sub> changes with time of exposure.

#### 5. Conclusion

A short-term, 1.7 to 2.0-fold increase in pCO<sub>2</sub> caused a 22-52% increase in NP<sub>C</sub> and a 44-80% decrease in calcification of a *P. compressa/M. capitata* assemblage in an outdoor flume. A short-term 10x nutrient loading of N and P had a comparable impact on NP<sub>C</sub> (+48%) but a lesser impact on calcification (-16%). The winter to summer change in temperature (3.8°C) and irradiance (19 to 37 mol quanta m<sup>-2</sup> d<sup>-1</sup>) had a greater impact on NP<sub>C</sub> (+96%) and a slight positive impact on calcification (+4%). We conclude that the impact of a doubling of pCO<sub>2</sub> is quite significant compared to the other environmental factors that affect coral calcification. There was minimal interaction between CO<sub>2</sub> effects and normal seasonal change in temperature and irradiance. The intercept of the NP<sub>C</sub>-CO<sub>2</sub>aq relationship changed from summer to winter but the slope of the relationship hardly changed. Neither the intercept nor slope of the calcification- $\Omega_a$  relationship changed significantly from summer to winter. The interaction between CO<sub>2</sub> and nutrient enrichment was quite different. Nutrient enrichment had the effect of making NP<sub>C</sub> and calcification less sensitive to change in [CO<sub>2</sub>aq] and  $\Omega_a$ , respectively, and somehow resulted in substantially higher rates of NP<sub>C</sub> and calcification at CO<sub>2</sub>aq and  $\Omega_a$  levels that were formerly limiting. The mechanism is not clear but it would appear that nutrient enrichment increases the supply of DIC to both photosynthesis and calcification.

We demonstrated that the first-order saturation state model did an excellent job of explaining the effect of the elevated pCO<sub>2</sub> treatments on the calcification. However, we also found evidence to support the hypothesis that elevated pCO<sub>2</sub> stimulates photosynthesis resulting in a reduced supply of DIC to calcification. A challenge for the future will be to combine what we know about the active and passive pathways of Ca<sup>2+</sup> and HCO<sub>3</sub><sup>-</sup>, the competing demands of photosynthesis and calcification for the internal pool of DIC and the evidence that calcification is controlled by the external concentrations of Ca<sup>2+</sup> and CO<sub>3</sub><sup>2-</sup> into a single unified theory of coral calcification. The future of coral reefs will also be shaped by thermal effects on calcification [*Coles and Jokiel*, 1978; *Houck et al.*, 1977; *Marshall and Clode*, 2004] and photosynthesis [see *Hoegh-Guldberg*, 2001 for a review of thermally induced bleaching]. Given that a future high-CO<sub>2</sub> world will bring a warmer and more acidic ocean it is clear that we need to know how the thermal and CO<sub>2</sub> effects will interact.

# Acknowledgements

We would like to thank Heidi Barnett, Jim Falter and Mark Carmichael for assisting in sampling and analysis of samples. We would also like to thank Fenny Cox for providing files of water temperature and surface irradiance. We acknowledge funding from University of Hawaii NOAA SeaGrant Program Award No. NA36RG0507 Yr 33 R/CR-1 to MJA and from the Packard Foundation to Columbia University Award No. 1999-8306. This is HIMB contribution # xxxx and SOEST contribution # xxxx.

# References

- Agegian, C.R., The biogeochemical ecology of Porolithon gardineri (Foslie), PhD thesis, Uni. of Hawaii, Honolulu, HA, 1985.
- Al-Horani, F.A., S.M. Al-Moghrabi, and D. de Beer, The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral *Galaxea fascicularis*, *Mar. Biol.*, *142*, 419-426, 2003.
- Allemand, D., P. Furla, and S. Benazet-Tambutte, Mechanisms of carbon acquisition for endosymbiotic photosynthesis in Anthozoa, *Can. J. Bot.*, *76*, 925-941, 1998.
- Al-Moghrabi, S., C. Goiran, D. Allemand, N. Speziale, and J. Jaubert, Inorganic carbon uptake for photosynthesis by the symbiotic coral-dinoflagellate association. 2.
   Mechanisms for bicarbonate uptake, *J. Exp. Mar. Biol. Ecol.*, 199, 227-248, 1996.
- Atkinson, M.J., and R.W. Bilger, Effects of water velocity on P uptake in coral reef flat communities, *Limnol. Oceanogr.*, *37*, 273-279, 1992.
- Atkinson, M.J., and J.L. Falter, Coral Reefs, in *Biogeochemistry of Marine Systems*, edited by K. Black, and G. Shimmield, pp. 40-64, CRC, Boca Raton, FL, 2003.
- Atkinson, M.J., and R.W. Grigg, Model of a coral reef ecosystem. II. Gross and net benthic primary production at French Frigate Shoals, *Coral Reefs*, *3*, 13-22, 1984.
- Atkinson, M.J., E. Kotler, and P. Newton, Effects of water velocity on respiration, calcification, and ammonium uptake of a *Porites compressa* community, *Pacific Science*, 48, 296-303, 1994.
- Barnes, D.J., Light response curve for calcification in the staghorn coral, Acropora acuminata, *Comp. Biochem. Physiol.*, 73, 41-45, 1982.
- Bates, N.R., L. McCreary, and L. Merlivat, Biogeochemical and physical factors influencing seawater fCO<sub>2</sub> and air-sea CO<sub>2</sub> exchange on the Bermuda coral reef, *Limnol. Oceanogr.*, 46, 833-846, 2001.
- Beardall, J., S. Beer, and J.A. Raven, Biodiversity of marine plants in an era of climate change: Some predictions based on physiological performance, *Bot. Mar.*, 41, 113-123, 1998.
- Bijma, J., H.J. Spero, and D.W. Lea, Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results), in

*Use of Proxies in Paleoceanography: Examples from the South Atlantic*, edited by G. Fischer, and G. Wefer, pp. 489-512, Springer-Verlag, Berlin, 1999.

- Boron, W.F., Sodium-coupled bicarbonate transporters, *J. of the Pancreas*, *2*, 176-181, 2001.
- Borowitzka, M.A., Photosynthesis and calcification in the articulated coralline alga *Amphiroa anceps* and *A. foliaceae*, *Mar. Biol.*, *62*, 17-23, 1981.
- Borowitzka, M.A., and A. Larkum, Calcification in the green algal Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanisms of calcification, *J. Exp. Bot.*, *27* (879-893), 1976.
- Brewer, P.G., and J.C. Goldman, Alkalinity changes generated by phytoplankton growth, *Limnol. Oceanogr.*, *21*, 108-117, 1976.
- Broecker, W., C. Langdon, T. Takahashi, and T.-S. Peng, Factors controlling the rate of CaCO<sub>3</sub> precipitation on Grand Bahama Bank, *Global Biogeochemical Cycles*, 15, 589-596, 2001.
- Broecker, W.S.a.P., T.-H., Gas exchange rates between air and sea., *Tellus 26*, 21-35., 1974.
- Burris, J.E., J.W. Porter, and W.A. Laing, Effects of carbon dioxide concentration on coral photosynthesis, *Mar. Biol.*, *75*, 113-116, 1983.
- Burton, E.A., and L.M. Walter, Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control?, *Geology*, 15, 111-114, 1987.
- Chalker, B.E., Calcium transport during skeletogenesis in hermatypic corals, *Comp. Biochem. Physiol.*, *54A*, 455-459, 1976.
- Chalker, B.E., and D.L. Taylor, Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral *Acropora cervicornis*, *Proc. R. Soc. Lond. B*, *190*, 323-331, 1975.
- Chalker, B.E., and D.L. Taylor, Rhythmic variations in calcification and photosynthesis associated with the coral *Acropora cervicornis* (Lamarck), *Proc. R. Soc. Lond. B*, 201, 179-189, 1978.

- Chipman, D., J. Marra, and T. Takahashi, Primary production at 47°N and 20°W in the North Atlantic: A comparison between the 14C incubation method and the mixed layer carbon budget, *Deep-Sea Res.*, 40, 151-169, 1993.
- Coles, S.L., and P.L. Jokiel, Synergistic effects of temperature, salinity and light on the hermatypic coral *Montipora verrucosa*, *Mar. Biol.*, *49*, 187-195, 1978.
- Dickson, A.G., and F.J. Millero, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, *Deep-Sea Res.*, 34, 1733-1743, 1987.
- Dubinsky, Z., H. Stambler, M. Ben-Zion, L.R. McCloskey, L. Muscatine, and P.G. Falkowski, The effect of external nutrient resources on the optical properties and photosynthesis of *Stylophora pistillata*, *Proc. R. Soc. Lond. B*, 239, 231-246, 1990.
- Dunbar, R.E., and J.E. Cole, Coral records of ocean-atmosphere variability, in NOAA Climate and Global Change Program, Special Report No. 10, University Corporation for Atmospheric Research, Boulder, CO, 1993.
- Erez, J., Vital effect on stable-isotope composition seen in foraminifera and coral skeletons, *Nature*, *273*, 199-202, 1978.
- Ferrier-Pages, C., J.-P. Gattuso, S. Dallot, and J. Jaubert, Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata, *Coral Reefs*, 19, 103-113, 2000.
- Ferrier-Pages, C., V. Schoelzke, J. Jaubert, L. Muscatine, and O. Hoegh-Guldberg, Response of a scleractinian coral, *Stylophora pistillata*, to iron and nitrate enrichment, *J. Exp. Mar. Biol. Ecol.*, 259, 249-261, 2001.
- Furla, P., I. Galgani, I. Durand, and D. Allemand, Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis, *J. Exp. Biol.*, 203, 3445-3457, 2000.
- Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano, and M. Kiyohara, Calcification in the articulated coralline alga *Corallina pilulifera*, with special reference to the effect of elevated CO<sub>2</sub> concentration, *Mar. Biol.*, *117*, 129-132, 1993a.

- Gao, K., Y. Aruga, K. Asada, and M. Kiyohara, Influence of enhanced CO2 on growth and photosynthesis of the red algae *Gracilaria* sp. and *G. chilensis*, *J. Applied Phycology*, 5, 563-571, 1993b.
- Gattuso, J.-P., D. Allemand, and M. Frankignoulle, Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry, *Amer. Zool.*, *39*, 160-183, 1999.
- Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine, and R.W. Buddemeier, Effect of calcium carbonate saturation of seawater on coral calcification, *Global and Planetary Change*, 18, 37-46, 1998.
- Gattuso, J.-P., M. Pichon, B. Delesalle, C. Canon, and M. Frankignoulle, Carbon-fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium, *Mar. Ecol. Prog. Ser.*, 145, 109-121, 1996.
- Gattuso, J.-P., M. Picon, B. Delesalle, and M. Frankignoulle, Community metabolism and air-sea CO<sub>2</sub> fluxes in a coral reef ecosystem (Moorea, French Polynesia), *Mar. Ecol. Prog. Ser.*, 96, 259-267, 1993.
- Goiran, C., S. Al-Moghrabi, D. Allemand, and J. Jaubert, Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association. 1.
  Photosynthetic performances of symbionts and dependence on sea water bicarbonate, *J. Exp. Mar. Biol. Ecol.*, *199* (207-225), 1996.
- Goreau, T.F., Problems of growth and calcium deposition in reef corals, *Endeavor*, 20, 32-39, 1961.
- Goreau, T.F., Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef builders, *Ann. N. Y. Acad. Sci.*, *109*, 127-167, 1963.
- Harrison, P.L., and C.C. Wallace, Reproduction, dispersal and recruitment of scleractinian corals, in *Ecosystems of the World*, edited by Z. Dubinsky, pp. 133-207, 1990.
- Hoegh-Guldberg, O., The future of coral reefs: integrating model projections and the recent behavior of corals and their dinoflagellates, in *Proceedings of the Ninth International Coral Reef Symposium, October 23-27, 2000.*, pp. 1105-1110, Bali, Indonesia, 2001.

- Hoegh-Guldberg, O., and G.J. Smith, Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals *Seriatophora hystrix* and *Stylophora pistillata*, *Mar. Ecol. Prog. Ser.*, *57*, 173-186, 1989.
- Houck, J.E., R.W. Buddemeier, S.V. Smith, and P.L. Jokiel, The response of coral growth and skeletal strontium content to light intensity and water temperature, *Proc. 3rd int. Symp. Coral Reefs*, 2, 424-431, 1977.
- Houghton, J.T., and e. al., Climate Change 1994: Radiative forcing of Climate Change and an Evaluation of the IS92 Emission Scenario, Cambridge Univ. Press., Cambridge, 1995.
- Inskeep, W.P., and P.R. Bloom, An evaluation of rate equations for calcite precipitation kinetics at pCO<sub>2</sub> less than 0.01 atm and pH greater than 8, *Geochimica et Cosmochimica Acta*, 49, 2165-2180, 1985.
- Jokiel, P.L., and S.L. Coles, Effects of temperature on the mortality and growth of Hawaiian reef corals, *Mar. Biol.*, *43*, 201-208, 1977.
- Kajiwara, K., A. Nagai, S. Ueno, and e. al., Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral *Acropora pulchra*, *J. of the School of Marine Science and Technology*, 40, 95-103, 1995.
- Kleypas, J.A., R.R. Buddemeier, D. Archer, J.P. Gattuso, C. Langdon, and B.N. Opdyke, Geochemical consequences of increased atmospheric CO<sub>2</sub> on corals and coral reefs, *Science*, 284, 118-120, 1999.
- Koop, K., D. Booth, A. Broadbent, J. Brodie, D. Bucher, D. Capone, J. Coll, W. Dennison, M. Erdmann, P.J. Harrison, O. Hoegh-Guldberg, P. Hutchings, G.B. Jones, A.W.D. Larkum, J. O'Neil, A. Steven, E. Tentori, S. Ward, J. Williamson, and D. Yellowlees, ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions, *Marine Pollution Bulletion*, *42*, 91-120, 2001.
- Krishnaveni, P., L.M. Chou, and Y.K. Ip, Deposition of calcium (<sup>45</sup>Ca<sup>2+</sup> in the coral *Galaxea fascicularis, Comp. Biochem. Physiol.*, *94A*, 509-513, 1989.

- Langdon, C., W. Broecker, D. Hammond, E. Glenn, K. Fitzsimmons, S.G. Nelson, T.-H. Peng, I. Hajdas, and G. Bonani, Effect of elevated CO<sub>2</sub> on the community metabolism of an experimental coral reef, *Global Biogeochemical Cycles*, 17 (1), 11-1 to 11-14, 2003.
- Langdon, C., T. Takahashi, C. Sweeney, D. Chipman, J. Goddard, F. Marubini, H. Aceves, H. Barnett, and M.J. Atkinson, Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef, *Global Biogeochemical Cycles*, 14, 639-654, 2000.
- Leclercq, N., J.-P. Gattuso, and J. Jaubert, CO<sub>2</sub> partial pressure controls the calcification rate of a coral community, *Global Change Biology*, *6*, 329-334, 2000.
- Leclercq, N., J.-P. Gattuso, and J. Jaubert, Primary production, respiration, and calcification of a coral reef mesocosm under increased CO<sub>2</sub> partial pressure, *Limnol. Oceanogr.*, 47, 558-564, 2002.
- Lesser, M.P., V.M. Weis, M.R. Patterson, and P.L. Jokiel, Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): Diffusion barriers, inorganic carbon limitation, and biochemical plasticity, *Journal of Experimental Marine Biology and Ecology*, *178* (2), 153-179, 1994.
- Lewis, E., and D.W.R. Wallace, Program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Dept. of Energy, Oak Ridge, Tennessee, 1998.
- Lirman, D., Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments, *Journal of Experimental Marine Biology and Ecology*, 251 (1), 41-57, 2000.
- Little, A.F., M.J.H. van Oppen, and B.L. Willis, Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals, *Science*, *304* (5676), 1492-1494, 2004.
- Marshall, A.T., and P. Clode, Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral, *Coral Reefs*, *23*, 218-224, 2004.
- Marubini, F., and M. Atkinson, Effects of lowered pH and elevated nitrate on coral calcification, *Mar. Ecol. Prog. Ser.*, *188*, 117-121, 1999.

- Marubini, F., H. Barnett, C. Langdon, and M.J. Atkinson, Dependence of calcification on light and carbonate ion concentration for the hermatypic coral *Porites compressa*, *Mar. Ecol. Prog. Ser.*, 220, 153-162, 2001.
- Marubini, F., and P.S. Davies, Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals, *Mar. Biol.*, *127*, 319-328, 1996.
- Marubini, F., C. Ferrier-Pages, and J.-P. Cuif, Suppression of growth in scleractinian corals by decreasing ambient carbonate ion concentration: a cross-family comparison, *Proc. R. Soc. Lond. B*, 270, 179-184, 2002.
- Marubini, F., and B. Thake, Bicarbonate addition promotes coral growth, *Limnol. Oceanogr.*, 44, 716-720, 1999.
- Mehrbach, C., C.H. Culberson, J.E. Hawley, and R.M. Pytkowicz, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, *Limnol. Oceanogr.*, 18, 897-907, 1973.
- Ohde, S., and R.v. Woesik, Carbon dioxide flux and metabolic processes of a coral reef, Okinawa, *Bull. Mar. Sci.*, 65, 559-576, 1999.
- Reynaud, S., N. Leclercq, S. Romaine-Lioud, C. Ferrier-Pages, J. Jaubert, and J.-P.
   Gattuso, Interacting effects of CO<sub>2</sub> partial pressure and temperature on photosynthesis and calcification in a scleractinian coral, *Global Change Biol*, 9 (11), 1660-1668, 2003.
- Riebesell, U., Wolf-Gladrow, D.A. and Smetacek, V., Carbon dioxide limitation of marine phytoplankton growth rates, *Nature 361*, 249-251, 1993.
- Riebesell, U., I. Zondervan, B. Rost, P. Tortell, R. Zeebe, and F.M.M. Morel, Reduced calcification of marine plankton in response to increased atmospheric CO<sub>2</sub>, *Nature*, 407, 364-367, 2000.
- Sakai, K., Effect of colony size, polyp size, and budding mode on egg production in a colonial coral, *Biol. Bull.*, *195*, 319-325, 1998.
- Sarmiento, J.L., and N. Gruber, Sinks for anthropogenic carbon, *Physics Today*, 55, 30-36, 2002.
- Sciandra, A., J. Harlay, D. Lefevre, R. Lemee, P. Rimmelin, M. Denis, and J.-P. Gattuso, Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation, *Mar. Ecol. Prog. Ser.*, 2003.

- Shirayama, Y., Impacts on ocean life in a high-CO<sub>2</sub> world, *J. Geophysical Res., in prep*, 2004.
- Smith, L.D., and T.P. Hughes, An experimental assessment of survival, re-attachment and fecundity of coral fragments, *Journal of Experimental Marine Biology and Ecology*, 235 (1), 147-164, 1999.
- Soong, K., Colony size as species characteristic in massive reef corals, *Coral Reefs*, *12*, 77-83, 1993.
- Stambler, N., N. Popper, Z. Dubinsky, and J. Stimson, Effect of nutrient enrichment and water motion on the coral *Pocillopora damicornis*, *Pacific Science*, 45, 299-307, 1991.
- Steven, A., and M.J. Atkinson, Nutrient loading factors during the ENCORE experiment, 2003.
- Suzuki, A., T. Nakamori, and H. Kayanne, The mechanism of production enhancement in coral reef carbonate systems: model and empirical results, *Sedimentary Geology*, 99, 259-280, 1995.
- Szmant, A.M., Reproductive ecology of Caribbean reef coral, *Coral Reefs*, 5, 43-47, 1986.
- Takabayashi, M., Impacts of in situ inorganic nutrient enrichment on the scleractinian corals, Stylophora pistillata and Pocillopora damicornis, M.Sc. thesis, University of Sydney, Sydney, Australia, 1996.
- Tambutte, E., D. Allemand, E. Mueller, and J. Jaubert, A compartmental approach to the mechanism of calcification in hermatypic corals, *J. Exp. Biol.*, 199, 1029-1041, 1996.
- Taylor, D.L., Mineralization in symbiotic systems, in *Endocytobiology II. Intracellular space as oligogenetic ecosystem*, edited by H.E. Schenk, and W. Schwemmler, pp. 689-697, Walter de Gruyter, Berlin, 1983.
- Weis, V.M., Effect of dissolved inorganic carbon concentration on the photosynthesis of the symbiotic sea anemone *Aiptasia pulchella* Carlgren: Role of carbonic anhydrase, *J. Exp. Mar. Biol. Ecol.*, 174, 209-225, 1993.
- Wood, R., Reef Evolution, Oxford University Press, New York, 1999.

- Wright, O.P., and A.T. Marshall, Calcium transport across the isolated oral epithelium of scleractinian corals, *Coral Reefs*, *10*, 37-40, 1991.
- Zhong, S., and A. Mucci, Calcite and aragonite precipitation from seawater solutions of various salinities: Precipitation rates and overgrowth compositions, *Chem. Geol.*, 78, 283-299, 1989.
- Zimmerman, R.C., D.G. Kohrs, D.L. Steller, and R.S. Alberte, Impacts of CO2 enrichment on productivity and light requirements of eelgrass, *Plant Physiol.*, *115*, 599-607, 1997.
- Zondervan, I., R.E. Zeebe, B. Rost, and U. Riebesell, Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO<sub>2</sub>, *Global Biogeochemical Cycles*, 15, 507-516, 2001.
- Zuddas, P., and A. Mucci, Kinetics of calcite precipitation from seawater: II. The influence of ionic strength, *Geochimica et Cosmochimica Acta*, 62, 757-766, 1998.

| Mean ± 95% CI.      |  |
|---------------------|--|
| e flume experiment. |  |
| ons during th       |  |
| nemical condition   |  |
| physical and ch     |  |
| evailing ambient    |  |
| Table 1. Pro        |  |

|                        | Temp           | Light                                      | TA                   | TCO,                       | HCO <sup>2</sup> -    | C0, <sup>2-</sup>     | CO, aq           | pCO,      | pHsw              | $\Omega_{ara\sigma}$ | ó                    |
|------------------------|----------------|--------------------------------------------|----------------------|----------------------------|-----------------------|-----------------------|------------------|-----------|-------------------|----------------------|----------------------|
| Dates                  | °C -           | mol quanta m <sup>-2</sup> d <sup>-1</sup> | μEq kg <sup>-1</sup> | ء<br>µmol kg <sup>-1</sup> | µmol kg <sup>-1</sup> | µmol kg <sup>-1</sup> | , ,<br>µmol kg⁻¹ | Latm      |                   | 40<br>5<br>5         | μmol L <sup>-1</sup> |
| Aug. 21 - Sep. 1, 1999 | $27.3 \pm 0.3$ | 37±6                                       | 2171±10              | 1929±12                    | 1742±15               | 173±6                 | $14\pm 1$        | 513±22    | 7.92±0.02         | $2.8{\pm}0.1$        | 209±7                |
| Jan. 7 - 18, 2000      | $23.4{\pm}0.3$ | $19\pm4$                                   | 2197±7               | 1935±8                     | 1737±10               | 185±2                 | $11.8 \pm 0.3$   | $408\pm9$ | $8.01 {\pm} 0.01$ | $2.91 \pm 0.04$      | 230±4                |

|                 |                    |                    |        | Up              | otake                |
|-----------------|--------------------|--------------------|--------|-----------------|----------------------|
| Date            | [PO <sub>4</sub> ] | [NH <sub>4</sub> ] |        | PO <sub>4</sub> | NH <sub>4</sub>      |
|                 | mme                | ol m <sup>-3</sup> |        | mmol            | $m^{-2}$ 4- $h^{-1}$ |
| 1/10/2000 14:30 | 13.1               | 104                |        |                 |                      |
| 1/10/2000 18:45 | 8.1                | 77                 |        | 5.5             | 29.6                 |
| 1/11/2000 14:42 | 12.8               | 109                |        |                 |                      |
| 1/11/2000 18:56 | 7.4                | 73                 |        | 5.9             | 39.8                 |
| 1/12/2000 15:10 | 12.8               | 115                |        |                 |                      |
| 1/12/2000 19:18 | 7.8                | 75                 |        | 5.5             | 43.9                 |
| 1/13/2000 14:52 | 13.1               | 109                |        |                 |                      |
| 1/13/2000 19:50 | 7.4                | 70                 |        | 6.2             | 42.6                 |
|                 |                    |                    | Avg    | 5.8             | 39.0                 |
|                 |                    |                    | SD     | 0.3             | 5.6                  |
|                 |                    |                    | 95% CI | 0.3             | 5                    |

Table 2. Nutrient uptake rates during and after nutrient enrichment.

|                 |                    |                    |                    |                 | Uptak               | e               |
|-----------------|--------------------|--------------------|--------------------|-----------------|---------------------|-----------------|
| Date            | [PO <sub>4</sub> ] | [NH <sub>4</sub> ] | [NO <sub>3</sub> ] | PO <sub>4</sub> | NH <sub>4</sub>     | NO <sub>3</sub> |
|                 |                    | mmol m             | -3                 | 1               | nmol m <sup>-</sup> | $^{2} d^{-1}$   |
| 1/11/2000 10:10 | 0.21               | 0.27               | 0.44               |                 |                     |                 |
| 1/11/2000 11:43 | 0.20               | 0.21               | 0.31               | 0.2             | 1.0                 | 2.2             |
| 1/12/2000 10:07 | 0.20               | 0.29               | 0.43               |                 |                     |                 |
| 1/12/2000 11:37 | 0.15               | 0.20               | 0.11               | 0.9             | 1.6                 | 5.6             |
| 1/13/2000 10:07 | 0.20               | 0.21               | 0.32               |                 |                     |                 |
| 1/13/2000 11:42 | 0.16               | 0.16               | 0.17               | 0.7             | 0.8                 | 2.5             |
| 1/13/2000 12:37 | 0.16               | 0.25               | 0.13               |                 |                     |                 |
| 1/13/2000 14:07 | 0.16               | 0.15               | 0.09               | 0.0             | 1.7                 | 0.7             |
| 1/14/2000 10:13 | 0.17               | 0.32               | 0.42               |                 |                     |                 |
| 1/14/2000 11:48 | 0.16               | 0.16               | 0.27               | 0.2             | 2.6                 | 2.5             |
| 1/14/2000 12:23 | 0.14               | 0.26               | 0.16               |                 |                     |                 |
| 1/14/2000 14:13 | 0.12               | 0.18               | 0.09               | 0.3             | 1.1                 | 1.0             |
| 1/15/2000 10:07 | 0.15               | 0.17               | 0.32               |                 |                     |                 |
| 1/15/2000 11:26 | 0.13               | 0.16               | 0.14               | 0.4             | 0.2                 | 3.6             |
| 1/15/2000 12:37 | 0.15               | 0.28               | 0.37               |                 |                     |                 |
| 1/15/2000 13:53 | 0.15               | 0.22               | 0.19               | 0.0             | 1.2                 | 3.7             |
| 1/16/2000 10:07 | 0.16               | 0.30               | 0.35               |                 |                     |                 |
| 1/16/2000 11:40 | 0.14               | 0.22               | 0.25               | 0.3             | 1.4                 | 1.7             |
| 1/16/2000 12:37 | 0.14               | 0.28               | 0.35               |                 |                     |                 |
| 1/16/2000 13:45 | 0.14               | 0.29               | 0.23               | 0.0             | -0.2                | 2.8             |
| 1/17/2000 10:07 | 0.16               | 0.42               | 0.41               |                 |                     |                 |
| 1/17/2000 11:37 | 0.22               | 0.20               | 0.22               |                 | 3.8                 | 3.3             |
| Avg             | 0.16               | 0.24               | 0.26               | 0.3             | 1.4                 | 2.7             |
| SD              | 0.03               | 0.07               | 0.11               | 0.3             | 1.1                 | 1.3             |
| 95% CI          | 0.01               | 0.03               | 0.05               | 0.2             | 0.6                 | 0.8             |

| Table 3. | Metabo   | olic ra | tes and the pl   | hysical conditions and se                   | awater carbo       | nate chemi            | istry during   | the experin | ients perform     | ed on the cora             | l assemblage in the flume                  | e.                       |                          |
|----------|----------|---------|------------------|---------------------------------------------|--------------------|-----------------------|----------------|-------------|-------------------|----------------------------|--------------------------------------------|--------------------------|--------------------------|
|          |          |         |                  |                                             |                    |                       |                |             |                   |                            |                                            |                          |                          |
| Date     | Run      | u       | Temp             | Irradiance                                  | HCO <sub>3</sub> - | $CO_3^{2-}$           | $CO_2$ aq      | $pCO_2$     | pH (sws)          | $\Omega_{\rm a}$           | Calcif                                     | $NP_{C}$                 | $\rm NP_{O}$             |
|          |          |         | °C               | μmol quanta m <sup>-2</sup> s <sup>-1</sup> |                    | µmol kg <sup>-1</sup> |                | µatm        |                   |                            | mmol CaCO3 m <sup>-2</sup> h <sup>-1</sup> | mmol C $m^{-2}$ $h^{-1}$ | mmol $O_2 m^{-2} h^{-1}$ |
| Aug-99   | 1.0x     | 18      | 27.3±0.3         | 1216±151                                    | 1691±14            | 185±6                 | $12.3 \pm 0.6$ | 460±20      | 7.96±0.02         | $3.0 {\pm} 0.1$            | 16 (2)                                     | 45 (3)                   | 37 (4)                   |
| Aug-99   | 1.7x     | 6       | $27.3 \pm 0.4$   | $1138\pm 233$                               | 1720±26            | $113\pm 6$            | 21±2           | 789±52      | $7.74{\pm}0.02$   | $1.82 \pm 0.09$            | 9 (4)                                      | 55 (6)                   | 36 (5)                   |
|          | q        | efore   | nutrient enric   | chment                                      |                    |                       |                |             |                   |                            |                                            |                          |                          |
| Jan-00   | 1.0x     | С       | $23.8 {\pm} 0.7$ | 712±328                                     | $1709\pm 21$       | 191±5                 | $11.3 \pm 0.3$ | 391±10      | $8.02 {\pm} 0.01$ | $3.01{\pm}0.09$            | 15.4(0.8)                                  | 23 (8)                   | 23 (2)                   |
| Jan-00   | 1.3x     | 7       | $23.8 {\pm} 0.2$ | $831 \pm 283$                               | 1717±24            | $144\pm4$             | $15.4 \pm 0.8$ | 526±34      | $7.90 \pm 0.02$   | 2.27±0.07                  | 12 (1)                                     | 32 (1)                   | 31 (0)                   |
| Jan-00   | 2.0x     | 1       | 24.4             | 851                                         | 1740               | 104                   | 22.9           | 781         | 7.74              | 1.65                       | б                                          | 35                       | 21                       |
|          |          | after 1 | nutrient enricl  | hment                                       |                    |                       |                |             |                   |                            |                                            |                          |                          |
| Jan-00   | 1.0x     | 9       | $23.2 \pm 0.5$   | 758±141                                     | $1701 \pm 18$      | 191±5                 | $11.2 \pm 0.6$ | 380±22      | $8.04{\pm}0.02$   | $3.00{\pm}0.08$            | 13 (1)                                     | 34 (6)                   | 30(4)                    |
| Jan-00   | 1.4x     | 0       | $23.8 {\pm} 0.7$ | $625 \pm 164$                               | 1723±26            | 145±11                | 15±1           | 527±41      | $7.90{\pm}0.03$   | $2.3 \pm 0.2$              | 13 (1)                                     | 35 (6)                   | 33 (2)                   |
| Jan-00   | 1.9x     | 9       | $22.8 \pm 0.4$   | 711±91                                      | $1734\pm19$        | $103 \pm 4$           | 22±1           | 733±36      | 7.76±0.02         | $1.62 \pm 0.06$            | 13 (2)                                     | 43 (4)                   | 34 (3)                   |
| Jan-00   | 0.6x     | 1       | 23.7             | 605                                         | 1599               | 298                   | 5.5            | 219         | 8.25              | 4.7                        | 16                                         | 34                       | 29                       |
| n: numbe | r of run | s. Me.  | an ± 95% CI.     | Variability (1م) in cher                    | nical conditi      | ons during            | individual ii  | ncubations  | typically: pC     | O <sub>2</sub> ±60 µatm, ∣ | pH $\pm 0.03$ , $\Omega_{a} \pm 0.1$ .     |                          |                          |

UJ, 54a ±U.1. 111, p11 ighteaus. pco2 -uu he â (nr) (m 5

# **Figure Legends**

- Water temperature (A) and surface water photosynthetically available irradiance (B) recorded at the Coconut Point weather station at the Hawaiian Institute of Marine Biology. The gray bars indicate the periods of this study.
- 2. The net photosynthesis-irradiance relationship (A) of the coral assemblage in the flume in January 2000 showing the measurements of net carbon production (NP<sub>C</sub>) and the hyperbolic tangent curve fit to the data. The calcification-irradiance relationship (B) of the same coral assemblage and the best fit straight line to the data.
- Rates of net production and calcification of the coral assemblage under ambient pCO<sub>2</sub> and nutrient concentration in August and under ambient pCO<sub>2</sub> before and after a nutrient enrichment in January.
- Combined effect of elevated pCO<sub>2</sub> and nutrient enrichment on NP<sub>C</sub> (A), NP<sub>O</sub> (B) and calcification (C).
- 5. Effect of [CO<sub>2</sub>aq] on the rate of net production expressed as a percentage of the rate at present day [CO<sub>2</sub>aq]. Uncertainty is SE.
- Effect of [CO<sub>2</sub>aq] on NP<sub>C</sub> in August and in January before and after nutrient enrichment. Uncertainty is SE.
- 7. Effect of reduced aragonite saturation state ( $\Omega_a$ ) on the calcification rate of the coral assemblage in August 1999 and in January 2000 before the nutrient enrichment. Heavy gray line represents the fit of the theoretical rate law relationship (Eq. 1) to the pooled data. Uncertainty is SE.
- 8. Impact of nutrient enrichment on the calcification- $\Omega_a$  relationship in January. Uncertainty is SE.

- 9. Calcification-NP<sub>C</sub> property-property plot showing the negative interaction between net production and calcification when the corals were subjected to elevated pCO<sub>2</sub>.
- 10. Effect of  $\Omega_a$  on calcification rate expressed as a percentage of the pre-industrial rate ( $\Omega_a$  =4.6). Data are from the present study and published studies on corals or coral reef communities. Heavy gray lines indicate the relationship predicted by the saturation state model (Eq. 1) assuming the reaction is first or second order.





Fig. 2.









Fig. 4



160 NP (% of rate at present day [CO<sub>2</sub>aq]) ■ NPc △ NPo 140 ■ △  $y = 76 + (3\pm 2)x$  $R^2 = 0.60$ 120 H Δ Δ 100 Δ  $y = 102 + (0\pm 1)x$  $R^2 = 0.01$ Δ 80 60

0

5

10

 $[CO_2aq],\,\mu mol~kg^{-1}$ 

15

20

Fig. 5

Fig. 6



Fig. 7







Fig. 9



Fig. 10

